

AmbrosiaMQ™
An Event Management System

April 2009

Administrator’s Guide

© U1 Technologies – AmbrosiaMQ™ - Administrator’s Guide ii

AmbrosiaMQTM

Copyright 2004-2009 U1 Technologies
All rights reserved. Printed in the USA.

Documentation Revision: 042409

This document is created for informational purposes only. U1 Technologies makes no
warranty of any kind with regard to this document and shall not be liable for errors
contained herein, or for any direct or indirect, incidental, special, or consequential
damages in connection with the furnishing, performance, or use of this material. The
entire risk of the use or the results of the use of this document remains with the user.

AmbrosiaMQ is a trademark of U1 Technologies. Java, 100% Pure Java, and all Java
based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. SecurID is a registered trademark
of RSA Security Inc. Parts of AmbrosiaMQ’s security system use DES, MD5, and
SHA implementations from Systemics Ltd. All other brands or product names
mentioned herein are or may be trademarks of, and are used to identify products or
services of their respective owners.

U1 Technologies
204 Tiburon Boulevard
San Rafael, CA 94901

phone: (415) 480-0318
fax: (415) 704-3275
web: http://www.u1.com
e-mail: info@u1.com

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide iii

Contents
Preface..v
Installation ...9

Supported Platforms..11
System Requirements..11
Installed Components..11
Installation - GUI ..12
Installation – Console Mode ...15
Client Installation ..15
Installation Log ...15
Testing the Installation..15

Broker Configuration ...21
Broker Configuration File (ambroker.ini)...22
General Broker Properties...23
Acceptor and Protocol Properties..24
Queue and Flow Control Properties..25
Guaranteed Message Properties ..27
Database Properties...28

Interbroker Configuration ...29
Interbroker Overview..30
Interbroker Topology Configuration (interbroker.cfg) ...31
Interbroker Configuration Properties (ambroker.ini) ..32
Interbroker Admin Console...33

System Messages..35
Broker Published System Messages..36

Expired Message Notification...36
Connect Message ..36
Disconnect Message..36
Reject Message..37

Client System Messages..37
Connection Dropped ...37

Glossary..39
Definition of Terms...40

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide v

Preface

About this Manual

This manual, the Administrator’s Guide, discusses system configuration and
maintenance of AmbrosiaMQ Event Management System. Use this manual for
instructions on installation procedure, message broker configuration, guaranteed
delivery log file administration, and the use of various tools.

Documentation Set

The AmbrosiaMQ Concepts and Capabilities Guide introduces the concepts
underlying an event management system. A comprehensive treatment of these
concepts provides a useful background for systems analysts, developers, and project
managers who wish to learn how to leverage AmbrosiaMQ to develop distributed
business applications. The concepts discussed in that guide provide an essential
groundwork for application architects and developers who will use these key
concepts in the design and development of AmbrosiaMQ business applications.
This conceptual groundwork leads naturally into the use of AmbrosiaMQ for
building secure globally deployed Internet/Intranet enterprise class applications.

Other documentation for the software includes the Javadoc generated from the
com.u1.client package as well as the directory of sample programs with their associated
readme files. We encourage you to review these samples before writing your own
applications

How to Use this Manual

Use this manual to install and configure AmbrosiaMQ on your system:

• “Chapter 1: Installation,” provides detailed instructions for the initial
installation of AmbrosiaMQ.

• “Chapter 2: Message Broker Configuration,” describes the system
administrator’s options to change the default settings of the message broker.
Read this chapter to learn how to change AmbrosiaMQ’s port number,
determine the location of log files, and establish detailed control over the
guaranteed delivery log file usage.

• “Chapter 3: Interbroker Configuration,” describes how to deploy and
configure multiple AmbrosiaMQ brokers into collaborating clusters that
are known as interbroker networks.

• “Chapter 4: System Messages,” lists broker and client system messages

 Preface

© U1 Technologies – AmbrosiaMQ™ – Administrator’s Guide vi

• “Appendix A: Glossary,” contains brief explanations of the terms used in the
manual. While we have attempted to use descriptive or industry terms, this
creates a common lexicon.

Feedback Welcome

Your comments are valuable to us. Your opinions represent the most important input
that we receive for the next generation of our documentation. We want to know
what we can do to improve this manual. You can send your comments by electronic
mail to us at:

support@u1.com

Or, you can mail your comments to:

AmbrosiaMQ Technical Publications Feedback
U1 Technologies
204 Tiburon Boulevard
San Rafael, CA 94901

Naming Conventions

U1CG denotes Interfaces with the prefix character I and Exceptions with the
character E. In general, U1CG adheres to standard Java naming conventions for
classes and methods.

Documentation Conventions
Documentation Conventions

The manual uses the following general conventions:

• Italics often designate a reference to other information. Used alone, italics
refer to the title of another manual; for example:

Refer to the Administrator’s Guide for additional information.

• References to another chapter within this manual start with the chapter
number and appear in quotations; for example:

 “Chapter 1: Installation,” includes the detailed procedures for
installing AmbrosiaMQ.

• References to other sections within a chapter use quotations; for example:

Refer to “Running the Message Broker as a Windows Service,”
below, for more information.

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide vii

Typographical Conventions

The manual uses the following typographical conventions:

• Bold emphasis on regular type represents a “button” on a graphical user
interface window that performs an action; for example:

Click Subjects to invoke the Selector window:

• When describing GUI windows, quotation marks enclosing regular text
indicate displayed text; for example:

“Members” lists all current group members.

In the above example, “bill,” “madeline,” and “marshall” are group
members of the group “BillsCo.”

• Angle brackets (<>) enclose names of keyboard keys or required
parameters that are user-specific; for example:

Enter the name of the new configuration file and press <Enter>.
Replace “<key>” with your license key.

• Within code examples, angle brackets enclose required actions that are user
specific; for example:

<prepare other RMs>

• Terms with their initial letter capitalized indicate Java objects, and
appended closed parentheses indicate Java method calls; for example:

When you publish a Message, it must have a subject. Use
Session.subscribe() on your Session object.

• Courier font represents AmbrosiaMQ and Java classes, methods,
arguments, and exceptions; for example:

To allow subscription to remain in effect, the boolean parameter
forceUnsubscribeAll of the method disconnect()needs
to be set to true.

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 9

1
Installation

This chapter covers the installation of the AmbrosiaMQ Event Management System
on various platforms.

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 11

Supported Platforms
AmbrosiaMQ version 4.5 is supported on the following platforms:

• Window 2000 and Windows XP

• Solaris 8

• Linux

System Requirements
The following system requirements are necessary for the installation of the
AmbrosiaMQ Event Management System:

• 400 Megahertz CPU or greater

• 100 Megabytes of disk space

• 512 Megabytes of RAM

AmbrosiaMQ will support and take advantage of multiple CPUs within a system.
Additionally, multiple network interface adapters may be used by the AmbrosiaMQ
system.

Installed Components
The AmbrosiaMQ installer will install the following items on the target system:

• AmbrosiaMQ broker libraries

• AmbrosiaMQ client libraries

• Scripts or batch files for initializing, starting, and stopping the broker

• Java Runtime Environment version 1.5.0.-03

• Derby database support files

• AmbrosiaMQ configuration files

All files, including the JRE are deployed to the target directory or a sub directory of
the target directory. No files are installed to system directories.

Optionally, the installer can create and install an auto-start script for the
AmbrosiaMQ broker. If this option is selected, then the installer must be run as
root to deploy the auto-start script into the system startup scheme. No other system
configuration files are created or modified by the AmbrosiaMQ installer.

On Windows platforms, the AmbrosiaMQ installer creates uninstall registry keys.

Application Components of the EMS Chapter 2: AmbrosiaMQ Event Management System

© U1 Technologies – AmbrosiaMQ™ – Administrator’s Guide 12

Installation - GUI

The AmbrosiaMQ installation tool supports a GUI installer for the following
platforms: Windows 2000, Windows XP, Solaris 8, and Linux.

Note: If your system does not have a graphical display, the AmbrosiaMQ installer
supports a command line console mode. Please refer to the next section for details.

To begin the installation process, execute the “setup” binary executable provided
with the AmbrosiaMQ distribution (from download or CD). The “setup”
executable filename is platform dependent.

• Windows – setup.exe

• Solaris – setup.bin

• Linux – setup.bin

Note: If you downloaded the AmbrosiaMQ distribution, you may need to set
execute permissions for the “setup” executable as follows:

 chmod +x setup.bin

Once the “setup” executable has been started, the following dialog will be
displayed:

After reviewing the introduction, clicking Next will allow you to choose your
installation target directory.

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 13

The installation folder should be a writable directory with at least 100 Megabytes of disk space. If you
specify a directory that does not exist, the installer will automatically create the new directory. If you
select a directory with an existing AmbrosiaMQ installation, then the installer will overwrite the
existing installation. Clicking the Next button will cause the installer to display the pre-installation
summary.

After reviewing the pre-installation summary, click Next to begin the installation
deployment process. If you would like to change the installation target directory,
click the Previous button to return the Choose Installation Folder step.

Application Components of the EMS Chapter 2: AmbrosiaMQ Event Management System

© U1 Technologies – AmbrosiaMQ™ – Administrator’s Guide 14

Once the installation deployment process begins, the installer will display a status
dialog that contains a progress status bar.

Once the software has been deployed, an Installation Complete dialog will be
displayed indicating the installation status (success or failure). Clicking the Done
button will terminate the installer process. At this point, you are ready to start the
AmbrosiaMQ message broker.

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 15

Installation – Console Mode
In addition to the GUI installer, the Unix platforms  Solaris and Linux, support a
console mode installer. This may be useful on server systems that do not have a
graphical display. To invoke the installer in console mode, run the following
command:

./setup.bin –i console

Client Installation
The AmbrosiaMQ client deployment consists of libraries for communicating with
the AmbrosiaMQ message broker for the supported languages. For Java clients, the
AmbrosiaMQ client library is distributed in a file called: client.jar.

For C clients, the AmbrosiaMQ client library is distributed in a library file called
amclient.so for Unix platforms, and amclient.dll for Windows platforms. All
AmbrosiaMQ C clients also require the AmbrosiaMQ Java client library: client.jar.

In addition, all AmbrosiaMQ clients, Java or C, require a Java virtual machine of
version 1.4.2 or higher (which includes Java 1.5 versions).

There is not an installation utility for installing the AmbrosiaMQ client package.
This is because the AmbrosiaMQ client is typically a component of a third party
application.

Installation Log
This installer will create an installation log named AmbrosiaMQ_4.5_InstallLog.
This file contains a log of all files deployed including their installed location, all
registry keys created or modified (Windows platforms), and all files modified by
the installation process. The installation log is very useful in diagnosing and
correcting installation issues.

Testing the Installation
Once the installation is complete, you can test starting the broker using the
following process:

1. From a console window, change the current directory to the AmbrosiaMQ
home directory (installation target directory). For example:

Application Components of the EMS Chapter 2: AmbrosiaMQ Event Management System

© U1 Technologies – AmbrosiaMQ™ – Administrator’s Guide 16

cd c:\AmbrosiaMQ

2. Initialize Broker Database

On Windows run:

windows\initdb

On Solaris run:

./solaris/initdb

On Linux run:

./linux/initdb

The console should display output similar to the following:

C:\AmbrosiaMQ\windows>initdb
C\Tools\proja>java com.u1.broker.InitBrokerDatabase create
[2005-07-05 19:27:34] JDBC Driver:
org.apache.derby.jdbc.EmbeddedDriver
[2005-07-05 19:27:34] JDBC URL:
jdbc:derby:AmbrosiaMQ_db;create=true
[2005-07-05 19:27:34] JDBC Driver Version: 10.0
[2005-07-05 19:27:34] JDBC Compliant: false
[2005-07-05 19:27:34] JDBC Props: config/derby.cfg
[2005-07-05 19:27:34] Database User: user1

Database objects were removed.
Creating table MessageInfo.
Creating index MsgInfoIdx.
Creating table Messages.
Creating index MsgIdx.
Creating table UserIdMapping.
Creating index UidIdx.
Creating table Subscriptions.
Creating index SubIdx.
Creating table UndeliveredMessages.
Creating UndeliveredMessages indices.
Warning: UndeliveredMessages indices not created.
Creating table PreparedTxns.
Creating table TxnMessages.
Creating table SyncPoint.
Creating table BrokerMode.
Creating table PBMsgInfo.
Creating table PBMsgs.
Creating table Topology.
Creating table BrokerConnS.
Creating table CbrSubscriptions.
Creating table MFR.
Setting security mode
Setting sync point
Broker Database initialization is complete.

InitBrokerDatabase terminates.

3. Start the Broker

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 17

On Windows run:

windows\runbroker

On Solaris run:

./solaris/runbroker

On Linux run:

./linux/runbroker

The console should display output similar to the following:

C:\Tools\proja>java com.u1.broker.Broker
AmbrosiaMQ Broker: Version 4.5 on 06/30/05 A Protocol P20
Copyright (c) 2003 U1 Consulting Group, Inc. All Rights Reserved.

This version of AmbrosiaMQ will support up to 999999 concurrent
connections.
Security is disabled.

[2005-07-05 19:41:46] Broker: master
[2005-07-05 19:41:46] JRE Version: Sun Microsystems Inc. 1.5.0_03
C:\tools\proja
\jre
[2005-07-05 19:41:46] JRE Max Memory: 66650112

[2005-07-05 19:41:46] Current Directory: C:\Tools\proja\.

[2005-07-05 19:41:46] Class Path:
c:\tools\proja\lib\AmbrosiaMQ_server.jar;C:\tool
s\proja\lib\AmbrosiaMQ_client.jar;C:\tools\proja\lib\derby.jar;C:\tools\proj
a\lib\
atest.jar;C:\tools\proja\lib\tests.jar;.

[2005-07-05 19:41:46] Library Path:

[2005-07-05 19:41:46] OS: Windows XP x86 5.1
[2005-07-05 19:41:46] OS User: tom
[2005-07-05 19:41:46] Num Processors: 1

[2005-07-05 19:41:47] JDBC Driver:
org.apache.derby.jdbc.EmbeddedDriver
[2005-07-05 19:41:47] JDBC URL:
jdbc:derby:AmbrosiaMQ_db;create=true
[2005-07-05 19:41:47] JDBC Driver Version: 10.0
[2005-07-05 19:41:47] JDBC Compliant: false
[2005-07-05 19:41:47] JDBC Props: config/derby.cfg
[2005-07-05 19:41:47] Database User: user1

[2005-07-05 19:41:49] Java Block File Support Enabled - Block Size: 4096
[2005-07-05 19:42:04] Requested Acceptors: 8001,ssl://8002
tcp Acceptor on port 8001 now accepting...
ssl Acceptor on port 8002 now accepting...

Application Components of the EMS Chapter 2: AmbrosiaMQ Event Management System

© U1 Technologies – AmbrosiaMQ™ – Administrator’s Guide 18

Note: If the AmbrosiaMQ broker fails to start with the
following message:

[2005-07-05 19:48:45] [146]
com.u1.broker.EStartupFailure: Broker already running

AmbrosiaMQ Message Broker exiting.

This error means there is a process already listening on the
default broker acceptor ports 8001 or 8002. To correct this
issue, either shutdown the conflicting process or reconfigure the
AmbrosiaMQ broker to listen on different ports that are not in
use.

4. Run a simple messaging test. This requires two console windows, one for
the subscriber and one for the publisher. The current directory of the
console windows should be the AmbrosiaMQ home directory. In separate
console windows run the following commands.

First, run the subscriber application:

On Windows run:

windows\sub

On Solaris run:

./solaris/sub

On Linux run:

./linux/sub

Second, run the publisher application:

On Windows run:

windows\pub

On Solaris run:

./solaris/pub

On Linux run:

./linux/pub

After the publisher application has completed running, the
subscriber console window should be similar to the following
display output:

C:\AmbrosiaMQ>java SubscribeToSubject
Subscribing to subject: #
Message:
$SYS.broker.connect.a.MessageSender_3455240477991753551:
java.io.EOFException

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 19

Message: testSubject: This is a test message
Message:
$SYS.broker.drop.a.MessageSender_3455240477991753551:
java.io.EOFException

Application Components of the EMS Chapter 2: AmbrosiaMQ Event Management System

© U1 Technologies – AmbrosiaMQ™ – Administrator’s Guide 20

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 21

2
Broker Configuration

This chapter describes how to configure an AmbrosiaMQ message broker through
the configuration file ambroker.ini.

 Chapter 2: Broker Configuration

© U1 Technologies – AmbrosiaMQ™ – Administrator’s Guide 22

Broker Configuration File (ambroker.ini)
The ambroker.ini file is the main repository for the AmbrosiaMQ broker properties.
The ambroker.ini file must be located in the current directory for the AmbrosiaMQ
broker process. The AmbrosiaMQ broker process must have read permissions for
the ambroker.ini configuration files; it does not require write permissions.

Chapter 2: Broker Configuration

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 23

General Broker Properties

Property Name Default Value Description

BROKER_NAME None

Name of the broker. Should be
11 characters or less.

BROKER_PASSWORD None Must be set if
INTERBROKER=true

LICENSE_KEY None Obtain license key from U1
Consulting Group, Inc.

ERROR_MSG_DIR ../messages Location of error message
catalogs for the broker.

ENABLE_SECURITY False Determines whether user
authentication is required to
connect to the broker and
whether ACL policies are
enforced by a broker.

ENABLE_MSG_EXPIRATION_
NOTIFICATION

False Determines whether the broker
will publish an expired
message notification when
dropping an expired message.

 Chapter 2: Broker Configuration

© U1 Technologies – AmbrosiaMQ™ – Administrator’s Guide 24

Acceptor and Protocol Properties

Property Name Default Value Description

ACCEPTORS 8001, ssl://8002 Defines a list of broker protocol
listeners (acceptors). Each acceptor
is of the format
<protocol>://<bindAddress>:<port>.
If multiple acceptors are defined,
then they should be separated by a
comma. The <protocol> and
<bindAddrss> are optional.

MAX_CONNECTIONS 1,000,000 concurrent
connections

The maximum number of
concurrent client connections that a
broker will allow.

SOCKET_CLOSE_DELAY_
MILLIS

10,000 milliseconds The time to wait for buffered data to
be sent before closing a socket.

SSL_CIPHERS SSL_RSA_WITH_RC4_128_SHA A comma separated list of SSL
cipher suites to available for SSL
connections on this broker. See
Available SSL Cipher table for
values.

The following SSL ciphers are available for use by the AmbrosiaMQ broker:

Available SSL Ciphers
SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_RC4_128_MD5
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_DSS_WITH_AES_128_CBC_SHA
 SSL_RSA_WITH_3DES_EDE_CBC_SHA
 SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
 SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
 SSL_RSA_WITH_DES_CBC_SHA
 SSL_DHE_RSA_WITH_DES_CBC_SHA
 SSL_DHE_DSS_WITH_DES_CBC_SHA
 TLS_RSA_WITH_AES_256_CBC_SHA

Chapter 2: Broker Configuration

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 25

 TLS_DHE_RSA_WITH_AES_256_CBC_SHA

Queue and Flow Control Properties

Property Name Default Value Description

INPUT_BUFFER_SIZE None Default size in bytes for the
broker’s
BufferedInputStreams.

OUTPUT_BUFFER_SIZE 1024 bytes Size in bytes of the broker’s
BufferedOutputStreams

OUTPUT_QUEUE_SIZE 1,000,000 bytes Maximum size of an individual
outgoing message queue on a
broker.

OUTPUT_QUEUE_POOL_SIZE 10,000,000 bytes Maximum total size of all
outgoing messages queues on a
broker.

FLOW_CONTROL_RESTART_
THRESHOLD

1000 bytes Number bytes that must be
available in a queue before
sending restart notification.

QUEUE_ACTIVATION_
THRESHOLD

4 messages The number of messages on a
queue before it is considered
active for sizing calculations.

QUEUE_ACTIVATION_
DELAY_MILLIS

3 seconds How long a queue must remain
above the activation threshold
to be considered active for
sizing calculations.

QUEUE_DEACTIVATION_
POLL_INTERVAL_MILLIS

30 seconds How often to check a queue to
see if it has become inactive
for sizing calculations

SAVE_QUEUE_SIZE 500,000 bytes Maximum size of the queue for
persisting messages to the
database.

 Chapter 2: Broker Configuration

© U1 Technologies – AmbrosiaMQ™ – Administrator’s Guide 26

Chapter 2: Broker Configuration

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 27

Guaranteed Message Properties

Property Name Default Value Description

LOG_PATH Current directory “.” Directory that contains the
guaranteed message log files.
This directory should always
be located on a local disk.

LOG_QUEUE_SIZE 500,000 bytes Maximum size of the log
manager’s queue.

MAX_LOG_FILE_SIZE 10,000,000 bytes Maximum size of the
guaranteed message log files.

SYNCPOINT_INTERVAL 1,000,000 bytes Number of bytes written to the
log before the broker’s state is
synced to disk and the
database.

RABF_BLOCK_SIZE 8192 bytes The minimum number of bytes
to write and commit to disk in
a single operation (block).
Only used for pure Java
implementation of the broker.

 Chapter 2: Broker Configuration

© U1 Technologies – AmbrosiaMQ™ – Administrator’s Guide 28

Database Properties

Property Name Default Value Description

DB_USER None The username to use when
establishing a JDBC
connection to the database.

DB_PASSWORD None The password to use when
establishing a JDBC
connection to the database.

DB_CONNECT None The JDBC connection string.

JDBC_DRIVER None The class name of the JDBC
driver to use for making
connections to the database.

DB_PROPERTIES None The name of a configuration
file containing the database
type mappings and other
database vendor specific
properties.

DB_MSG_CLEAN_THRESHOLD 5,000 messages The number of unreferenced
messages to retain in the
database before performing a
cleanup operation.

EXP_MSG_CLEAN_
THRESHOLD

10,000 messages The number of expired
messages to retain in the
database before performing a
cleanup operation.

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 29

3
Interbroker Configuration

This chapter describes how to deploy and configure multiple AmbrosiaMQ brokers
into collaborating clusters that are known as interbroker networks.

 Chapter 3: Interbroker Configuration

© U1 Technologies – AmbrosiaMQ™ – Administrator’s Guide 30

Interbroker Overview
The interbroker network allows multiple AmbrosiaMQ Message Brokers to interact
together and operate as a single logical broker.

With the interbroker architecture, each broker can register with other AmbrosiaMQ
Message Brokers. The broker registers as a single proxy to represent all of its
clients' publications and subscriptions. The architecture supports a variety of
topologies, which developers can adopt depending on their application
requirements. For example, basic designs include collectives (in which each broker
is connected to all the others) and hierarchies (in which individual brokers or
collectives form a "tree").

This represents a fundamental expansion in terms of scalability for AmbrosiaMQ
systems. It provides several overall benefits:

• scalability to support many concurrent users,

• fault isolation,

• integration of geographically dispersed offices.

Multiple AmbrosiaMQ brokers may be configured to work together in a network.
This is called an Interbroker Network. An interbroker network is organized into one
or more collectives. Each broker within a collective has connections to every other
broker in the collective, and each collective within a network has connections to
every other collective. These connections allow a subscriber to access subjects
published on any broker within the network. Collectives may standalone or they
may be interconnected, via a common broker, to form a collective hierarchy.

Chapter 3: Interbroker Configuration

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 31

Interbroker Topology Configuration
(interbroker.cfg)

The interbroker network configuration resides in a file named interbroker.cfg. The
interbroker configuration may either be obtained from a local file or from a
configuration server broker. For brokers using a local interbroker configuration
file, the interbroker.cfg file must be located in the current directory of the
AmbrosiaMQ broker process.

The interbroker configuration file consists of a broker block, followed by one or
more collective blocks. The format is:

.brokers
<broker>,[ssl://]<host:port>

.collective <collective> <broker1>
<broker2> [...]

The following interbroker configuration file demonstrates a simple interbroker
configuration that defines two standalone collectives.

.brokers
broker1, trout.acme.com:8001
broker2, bass.acme.com:8001
broker3, ssl://shark.acme.com:8002
broker4, ssl://tuna:acme.com:8002

.collective collective1
broker1
broker2

.collective collective2
broker3
broker4

The following interbroker configuration file demonstrates an interbroker
configuration that defines two interconnected collectives.

.brokers
broker1, trout.acme.com:8001
broker2, bass.acme.com:8001
broker3, ssl://shark.acme.com:8002
broker4, ssl://tuna.acme.com:8002
broker5, ssl://pike.acme.com:8002

.collective collective1
broker1
broker2
broker3

.collective collective2
broker3
broker4
broker5

 Chapter 3: Interbroker Configuration

© U1 Technologies – AmbrosiaMQ™ – Administrator’s Guide 32

Interbroker Configuration Properties
(ambroker.ini)

Property Name Default Value Description

ENABLE_INTERBROKER False Determines whether this
broker will attempt to connect
to other brokers in an
interbroker network.

IB_CONFIG_SERVER None The host:port connection
specification for the broker
designated to act as the
interbroker configuration
server.

Chapter 3: Communication Models Connecting Applications

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 33

Interbroker Admin Console

The Interbroker Admin Console is a console application that allows an
Administrator to dynamically create or modify interbroker networks, while the
brokers are running. The Interbroker Admin Console is started with the following
command (this assumes you have sourced the AmbrosiaMQ environment).

 java com.u1.tools.IBAdminConsole <configuration broker host>:<port>

Once the Interbroker Admin Console has started, the tool will display the following
prompt:

 IBAdmin>

Pressing the Enter key will cause the Interbroker Admin Console to display the
following menu of commands:

C:\AmbrosiaMQ> java com.u1.tools.IBAdminConsole localhost:8001
IBAdmin>
Commands:
 list brokers
 list collectives
 list <collective>
 new collective <collective>
 new broker <broker> <host:port>
 add <collective> <broker>
 remove <collective> <broker>
 remove collective <collective>
 remove broker <broker>

To use a command simply type in the command name and require parameters. The
command will be executed when you press the Enter key. Updates to the
interbroker configuration will occur as soon as the command is executed.

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 35

4
System Messages

 Chapter 4: System Messages

© U1 Technologies – AmbrosiaMQ™ – Administrator’s Guide 36

Broker Published System Messages

Expired Message Notification

If the flag ENABLE_MSG_EXPIRATION_NOTIFICATION is set to true, then the broker will
publish expired message subjects to $SYS.broker.expiredMessage.<subject>.<expire time>.

Message Subject:

$SYS.broker.expiredMessage.<subject>.<expire time>

Message Body:

Body copied from the expired message

Connect Message

Upon a client's successful connection to a broker, a message containing the broker name, remote IP
address, and remote port is published to $SYS.broker.connect.<broker name>.<uid>.<appid>.

Message Subject:

$SYS.broker.connect.<broker name>.<uid>.<appid>

Message Body:

UTF String: broker name

UTF String: remote IP address

int: remote port

Disconnect Message

When a client disconnects normally, a message containing the remote IP address and remote port is
sent to $SYS.broker.disconnect.<broker name>.<uid>.<appid>.

Message Subject:

$SYS.broker.disconnect.<broker name>.<uid>.<appid>

Message Body:

UTF String: remote IP address

int: remote port

Chapter 4: System Messages

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 37

Drop Message

When a client connection is abnormally terminated, a message containing the remote IP address and
remote port is sent to $SYS.broker.drop.<broker name>.<uid>.<appid>.

Message Subject:

$SYS.broker.disconnect.<broker name>.<uid>.<appid>

Message Body:

UTF String: remote IP address

int: remote port

Reject Message

When a connection is rejected due to an authentication failure, messages are published to
$SYS.broker.reject.<broker name>. If uid and appid are known, then messages are published to
$SYS.broker.reject.<broker name>.<uid>.<appid>. The message body will contain the
remote IP address, remote port, and the reject error code.

Message Subject:

$SYS.broker.reject.<broker name>.<uid>.<appid>

Message Body:

UTF String: remote IP address

 int: remote port #

int: error code

Client System Messages

Connection Dropped

When a connection is lost or dropped without a normal disconnect, the AmbrosiaMQ client will
post a system message to itself that the broker connection has been lost. Applications can use this
message to implement recovery and reconnection logic.

Message Subject:

$SYS.client.brokerConnectionDropped

Message Body:

 Chapter 4: System Messages

© U1 Technologies – AmbrosiaMQ™ – Administrator’s Guide 38

int: Error code

int: Specific error code information

Chapter 4: System Messages

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 39

A
Glossary

This glossary offers a brief overview of commonly used terms to help clarify AmbrosiaMQ’s major
concepts and characteristics.

Definition of Terms Appendix A: Glossary

© U1 Technologies – AmbrosiaMQ™ – Administrator’s Guide 40

Definition of Terms

AmbrosiaMQ Client Application
The client application refers to an application that uses the AmbrosiaMQ client
package to communicate with the event management system. The package may
already reside, pre-provisioned, on a user’s local computer or may arrive with an
applet downloaded from an HTTP server. Once on the local machine, an application
uses methods in the client API to connect with the message broker and join the
AmbrosiaMQ system.

Credentials
This consists of the user’s ID (i.e., name or login) and password. Credentials objects
identify the end users of AmbrosiaMQ client applications.

Event
A business event can be anything that happens which materially affects your
organization. AmbrosiaMQ encapsulates business events as information carried in
messages.

Event Management System
The AmbrosiaMQ Event Management System includes the entire communications
infrastructure and the information flowing within the system. The infrastructure
links several main components: the business application using the AmbrosiaMQ
Client API, the AmbrosiaMQ Message Broker, and other client applications.

Interbroker
An optional AmbrosiaMQ feature that allows you to have more than one broker. Using the
Interbroker Configuration tool, you may establish and maintain multiple brokers. Groups of
brokers are then organized into “collectives.”

Message
Message objects carry event information between AmbrosiaMQ client applications.
AmbrosiaMQ messages consist of a subject name and a content body, which is
simply a series of bytes. As a result, messages can include any application data.
Each message must be published to a specific subject. AmbrosiaMQ does not set
any limits on the size of a message. AmbrosiaMQ handles the details of
marshalling, unmarshalling, and other low level process details so that developers
can focus on the message contents.

Appendix A: Glossary Definition of Terms

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 41

Message Broker

As the heart of the system, the broker routes messages and implements services. A
broker communicates with AmbrosiaMQ client applications; in the future, it will
connect with other message brokers as well. The message broker maintains lists of
connected clients and their current subscriptions. Client applications and the message
broker communicate by use of the com.u1.client package.

Message Handler
Message handlers act upon messages arriving at a client. The client application
must initially set a default message handler; it can then take this further by
designating specific message handlers for individual subjects or sets of subjects.

Publish
A publish occurs when an AmbrosiaMQ client application produces information
and sends a message with this information to the message broker.

Publish/Subscribe
The publish/subscribe communication model is based on the ability of client
applications to publish messages tagged with subject names, which are then
delivered only to other clients who hold a subscription (that is, an interest) for that
subject. This basic model promotes a many-to-many mapping of publishers to
subscribers. It also describes an anonymous communications architecture wherein
subscribers do not need to know who published a particular message and publishers
do not know the subscribers’ specific addresses. A central message broker tracks
subscriptions, routes messages, and implements delivery policies. By default, every
client application can publish and/or subscribe to a subject.

Quality of Protection
The Quality of Protection (QOP) options, for a subject, consists of privacy and
integrity. Privacy assures that only the intended recipient views a message by using
encryption. Integrity uses a cryptographic checksum algorithm to ensure that the
information within a message cannot be altered without the recipient knowing about
it.

Quality of Service
Quality of Service (QOS) refers to delivery semantics, which are the levels of
assurance with which AmbrosiaMQ will deliver a message. AmbrosiaMQ supports
two types of delivery semantics: reliable and guaranteed message delivery.

Definition of Terms Appendix A: Glossary

© U1 Technologies – AmbrosiaMQ™ – Administrator’s Guide 42

Request/Reply
The request/reply model provides a very useful approach to query for particular
information. AmbrosiaMQ implements request/reply as a special case of publish/
subscribe. When a publisher sends out a message as a synchronous request, the
function will wait until the first response to the request is received; all other
responses are ignored.

Session
Every session represents a single context of communication between the broker and
client application. Client applications can create multiple sessions in which to
perform work.

Subjects
Subjects provide the key to the routing of messages between publishers and
subscribers. Subjects provide an anonymous alternative to citing specific
destination addresses. Almost any string of Unicode characters can act as a subject to
describe the topic category of a message. Subject names consist of one or more
levels separated by the period (.) character. AmbrosiaMQ reserves subject names
with “$SYS” and “$ISYS” at the first level for internal system use.

Subject Expression
A subject expression can include multiple levels and one or more wildcards, the
asterisk (*) or the pound(#). Thus, the subject expression can represent a set of
subjects for subscribing or binding. Wildcard characters are not interpreted as
wildcards in publish(), unsubscribe(), or unbind().

Subject Tree
Subject trees form the basis of message routing in AmbrosiaMQ and thus play an important
role in application design. Subject trees are hierarchical strings composed of levels of
subject names. Levels are established by using a separator character, the period (.), to
partition the subject tree branches. Thus, levels can establish subject branches such as
“SOFTWARE.JAVA” or “SOFTWARE.C” to provide groups and specific sub-topics for
messages. The system can have an unlimited number of subject trees, and each subject tree
can have an unlimited number of levels.

Subscribe
To subscribe, a client application registers interest in a subject or multiple subjects, possibly
by using wildcards. Subscribing presents several choices: quality of service, specific
message handler, and related features. The developer usually hides the use of message
handlers, delivery semantics, and specific subjects from the end user of the application
using AmbrosiaMQ for its communications.

Appendix A: Glossary Definition of Terms

© U1 Technologies – AmbrosiaMQ – Administrator’s Guide 43

Transaction
Several classes of applications require grouping individual tasks into a single,
coordinated “unit of work”. This grouping of tasks is called a transaction. In a
distributed transaction, the tasks in the unit of work are performed on physically
different computers or by different application programs or services.

Two-Phase Commit
This protocol enables AmbrosiaMQ to commit a transaction and send an entire set of
messages in a unit of work, or to abort and roll back the entire set of messages. Thus, the
message broker acts as a resource manager so client applications can participate in
transactions.

