

AmbrosiaMQ:
An Event Management System

Concepts and Capabilities Guide
April 2009

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide ii

AmbrosiaMQTM

Copyright 2004-2009 U1 Technologies
All rights reserved. Printed in the USA.

Documentation Revision: 042409

This document is created for informational purposes only. U1 Technologies makes no
warranty of any kind with regard to this document and shall not be liable for errors
contained herein, or for any direct or indirect, incidental, special, or consequential
damages in connection with the furnishing, performance, or use of this material. The
entire risk of the use or the results of the use of this document remains with the user.

AmbrosiaMQ is a trademark of U1 Technologies. Java, 100% Pure Java, and all Java
based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. SecurID is a registered trademark
of RSA Security Inc. Parts of AmbrosiaMQ’s security system use DES, MD5, and
SHA implementations from Systemics Ltd. All other brands or product names
mentioned herein are or may be trademarks of, and are used to identify products or
services of their respective owners.

U1 Technologies
204 Tiburon Boulevard
San Rafael, CA 94901

phone: (415) 480-0318
fax: (415) 704-3275
web: http://www.u1.com
e-mail: info@u1.com

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide iii

Contents

Preface..vii
Introduction ...11

AmbrosiaMQ – The Event Management System of Choice.....................................12
Feature Overview of AmbrosiaMQ ..13
Advantages of AmbrosiaMQ ..15

Benefits ...16
Evolving Roles of AmbrosiaMQ ..20
How the Event Management System Works ..22
Application Components of the EMS ...23

AmbrosiaMQ Message Broker ...23
AmbrosiaMQ Client Applications ..23
AmbrosiaMQ Services ..23
Administration Console ..24
Location of the Application Components ...24

Managing Event Information ..25
Following an Event through the System ...28

Scenario 1: Basic Event Management...28
Scenario 2: Event Management without Human Intervention..............................29
Scenario 3: Event Management between Multiple Systems30

Publish/Subscribe – Event-Based Communications ...34
Publish/Subscribe Process...34

Request/Reply – Demand-Driven Communications...36
Synchronous..36
Asynchronous..36

AmbrosiaMQ Interfaces – Connecting Applications..37
Java Client Package...37
Java Message Service (JMS)...38
C Client Library ..38

Quality of Service ...39
Reliable Delivery ..39
Discardable Delivery...39
Load Balanced Connections..39
Load Balanced Delivery..40
Guaranteed Delivery ...41
Transactional Publication..41
Subscription Recovery ..41

Customizing Communications ..42
Message Priority..42
Message Expiration...42

 Chapter 1: Introduction

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide iv

Route Limits..43
Virtual Circuits..43
Bulk Subscriptions and Reference Counting ..45
Flow Control ...46
Client Queue Size Monitoring ..48
Client Heartbeat Monitoring ...49
Message Content Selection ...49
Stream Transfer...50
Fast Serialization, Dictionaries, and Catalogs...51
Intra-Process Messaging (IPM)...52

Subject Names and Subject Trees ...55
Subjects and Subject Trees: Structure...56
Using Subjects...57
Subject Syntax and Semantics ..58
Using Wildcards with Subjects ...59

Wildcards in Subscriptions ...59
Wildcards in Publications ...59
Wildcards and Unsubscribe...60
Wildcards in Message Handlers..60

Subject Space APIs ...60
Security...63

Overview of Security Issues..64
Internet Security ..64
AmbrosiaMQ Security Design Advantages ..65

Identification and Authentication..66
Authentication Overview ..66

Subject-based Security ..66
Authorization and Access Control ..67
Quality Of Protection (QOP) ..68
Inheritance of Security Policies ..69
Security Policies and Wildcard Subjects...70

Responsibilities ...71
Responsibilities of an Application Developer...71
Responsibilities of a System Administrator..71

Security APIs ..71
Interbroker Networks...73

Single Broker Topology..74
Interbroker Topology ..75
Broker Roles in Interbroker Network ...77

Primary Configuration Server ...77
Backup Configuration Server..77
General Purpose Broker ..77

Working with Transactions..79
Introduction to Transactions ...80
Two Phase Commit ...81

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide v

How It Works..81
Recovery ...81

Transaction Operations in AmbrosiaMQ..82
Basic Transaction Structure ..82
Beginning a Transaction ...83
Rolling Back a Transaction...83
Committing the Transaction..83
Determining Transaction Status..83

Glossary..87
Definition of Terms...88

Index ...92

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide vii

Preface

About this Manual

This manual, the AmbrosiaMQ Concepts and Capabilities Guide, introduces the
concepts underlying the AmbrosiaMQ event management system. A
comprehensive treatment of these concepts provides a useful background for
systems analysts, developers, and project managers who wish to learn how to
leverage AmbrosiaMQ to develop distributed business applications. The concepts
discussed here provide an essential groundwork for application architects and
developers who will use these key concepts in the design and development of
AmbrosiaMQ business applications. This conceptual groundwork leads naturally
into the use of AmbrosiaMQ for building secure, globally deployed Internet/Intranet
enterprise class applications.

Documentation Set

The Administrator’s Guide discusses system configuration and maintenance of
AmbrosiaMQ. Consult this manual for instructions on installation procedure,
message broker configuration, guaranteed delivery log file administration, use of
the Administration Console, and security.

Other documentation for the software includes the Javadoc generated from the
com.u1.client package as well as the directory of sample programs with their associated
readme files. We encourage you to review these samples before writing your own
applications.

Feedback Welcome

Your comments are valuable to us. Your opinions represent the most important input
that we receive for the next generation of our documentation. We want to know
what we can do to improve this manual. You can send your comments by electronic
mail to us at:

AmbrosiaMQsupport@u1.com

Or, you can mail your comments to:

AmbrosiaMQ Technical Publications Feedback
U1 Technologies.
204 Tiburon Blvd
San Rafael, CA 94901

 Chapter 1: Introduction

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide viii

Naming Conventions

This manual denotes Interfaces with the prefix character I and Exceptions with the
character E. In general, this manual adheres to standard Java naming conventions for
classes and methods.

Documentation Conventions

The manual uses the following general conventions:

• Italics often designate a reference to other information. Used alone, italics
refer to the title of another manual; for example:

Refer to the Administrator’s Guide for additional information.

• References to another chapter within this manual start with the chapter
number and appear in quotations; for example:

 “Chapter 1: Installation,” includes the detailed procedures for
installing AmbrosiaMQ.

• References to other sections within a chapter use quotations; for example:

Refer to “Running the Message Broker as a Windows Service,”
below, for more information.

Typographical Conventions

The manual uses the following typographical conventions:

• Bold emphasis on regular type represents a “button” on a graphical user
interface window that performs an action; for example:

Click Subjects to invoke the Selector window:

• When describing GUI windows, quotation marks enclosing regular text
indicate displayed text; for example:

“Members” lists all current group members.

In the above example, “bill,” “madeline,” and “marshall” are group
members of the group “BillsCo.”

• Angle brackets (<>) enclose names of keyboard keys or required
parameters that are user-specific; for example:

Enter the name of the new configuration file and press <Enter>.
Replace “<key>” with your license key.

• Within code examples, angle brackets enclose required actions that are user
specific; for example:

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide ix

<prepare other RMs>

• Terms with their initial letter capitalized indicate Java objects, and
appended closed parentheses indicate Java method calls; for example:

When you publish a Message, it must have a subject. Use
Session.subscribe() on your Session object.

• Courier font represents AmbrosiaMQ and Java classes, methods,
arguments, and exceptions; for example:

To allow subscription to remain in effect, the boolean parameter
forceUnsubscribeAll of the method disconnect()needs
to be set to true.

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 11

1
Introduction

Application developers have learned over the years that common services
surrounding an application — resource and network reliability, security, and
transactional capabilities — are critical to an application’s overall success. These
capabilities are especially important when developing enterprise-wide distributed
systems that must be fault tolerant and scale to many concurrent users. Most
application developers add their greatest value when they focus their time, energy,
and resources on business logic rather than on low-level infrastructure. The need
for reusable, secure, reliable, and scalable communications services led to the
creation of a class of software known as enterprise messaging. Enterprise
messaging insulates developers from infrastructure-level programming, and allows
them to concentrate their development efforts on business logic and application
level features.

AmbrosiaMQ addresses this need, with a communications infrastructure that is
proven to be secure, scalable, high performing, efficient, and reliable for the most
demanding enterprise applications.

 Chapter 1: Introduction

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 12

AmbrosiaMQ – The Event Management System
of Choice

The AmbrosiaMQ event management system (EMS) facilitates the development of
secure, scalable enterprise applications that span a wide variety of network
topologies including: LANs, WANs, and the Internet. The AmbrosiaMQ EMS
employs an event-based communications model crafted for business applications
and provides the seamless exchange of information between highly distributed
system elements. AmbrosiaMQ is also commonly referred to as a “Messaging
System”; in this document, the terms “Event Management System” and “Messaging
System” are synonymous.

AmbrosiaMQ satisfies two basic requirements for an organization’s computing
architecture: a short term need for the rapid development and delivery of
applications, and a long term need for these applications to be adaptable to
changing business requirements. AmbrosiaMQ satisfies both of these requirements
by providing a straightforward Application Programming Interface (API), along
with a set of core services that applications can leverage.

In addition to these general characteristics, AmbrosiaMQ specifically offers the
robust communications functionality you expect by supplying critical network
services such as guaranteed message delivery, security, load balancing, and
transactional capabilities, all out-of-the box. Until now, the effort required to build
applications containing these features presented developers with a choice between
investing significant time and resources at the outset, or abandoning these features
altogether. With AmbrosiaMQ, business application developers can focus on
solving business problems, not developing application infrastructure.

Chapter 1: Introduction Advantages of

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 13

Feature Overview of AmbrosiaMQ
Applications that employ IP networks for reliable connectivity to services need
robust communications beyond that which the low-level TCP/IP protocol provides.
Messaging products bridge the application and the network, and allow thin clients
to offload much of the message processing to external servers (message brokers).
This section provides an overview of the wide range of features that AmbrosiaMQ
provides to a system. AmbrosiaMQ is ideally suited for the high demands of large-
scale systems.

Quality of service

• Reliable delivery – at most once

• Discardable delivery – allows dropping messages for slow clients

• At least once delivery (guaranteed)

• Exactly once delivery

• Message priorities

• Synchronous / asynchronous publishing

• Distributed transaction support with two phase commit

• Message order preservation

• Message expiration

• Virtual Circuit support for communication interruption notification

• Most Recent Value (MRV) (Summer 2007)

Flow Control

• Queuing: client side, broker-to-client, outgoing queue on client

• Full queues: control flow on publisher, subscriber kickoff, or drop
messages

• Client side queue size configuration

• Client side queue statistics

Scalability

• Flexible interbroker network architecture

• Global data kept to minimum (subscriptions, active user list).

• Route limits (local, collective, global)

• Multicast like delivery for messages that have more than one subscriber.
Single message transmitted on shared route segments.

• Message delivery only to active client (no client side filtering).

Advantages of Chapter 1: Introduction

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 14

Speed

• Efficient wire protocols

• Use of hashing for subject efficiency.

• Fast serialization

• Efficient search algorithms to find subscriptions and ACLs.

• Stream data delivery

• Large result sets

• Static data encoding

Security

• Strong native authentication via a challenge/response protocol in which
the passwords are never sent on the wire

• Security database: usernames/passwords, groups, ACLs.

• Encrypted wire protocol (SSL)

• JAAS-based authentication for integration with other authentication
mechanisms

• Duplicate connection checker

• Embedded principal ACLs

Fault tolerance

• Redundant configuration servers

• Load balanced connections

• Subscription recovery

• Load balanced subscriptions provide transparent failover capability

• Weighted load balanced Virtual Circuits

• Restart brokers in any order

• Virtual Circuit connection manager

API

• 100% Java client API.

• C and C++ client API

• JMS API

Special Features

• Exposed security API

• JAAS-based authentication

Chapter 1: Introduction Advantages of

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 15

• Point-to-point Round Trip Time monitoring API

• Virtual Circuit service discovery

• Array list subscriptions

• Subscription reference counting

• Subject space API

• Enhanced Selectors including support for regular expressions, date, and
time.

• Multiple acceptors/protocols

• Wildcard publishing

• Client heartbeat monitoring

• Centralized log monitoring

Advantages of AmbrosiaMQ
Developers gain a number of advantages by using AmbrosiaMQ. In addition to
reducing initial development time, AmbrosiaMQ imparts significant network
functionality to applications. Centralized control allows a system administrator to
monitor and modify the event management system from a single console. Increased
capabilities and enhanced functionality ultimately benefit the end users. In short,
AmbrosiaMQ offers the following features:

• Event-Based Communications Infrastructure

• 100% Pure Java Client Interface

• Decoupled Development

• Abstraction of Communications

• Location Transparency

• Modular Architecture

• Administration Services

• Push and Respond

• Quality of Service

• Transactional Services

• Comprehensive Security

• Performance Oriented

• Multiple Wire Protocols

• Intra-process Messaging

Advantages of Chapter 1: Introduction

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 16

Benefits

Event-Based Communications Infrastructure
To more closely model how business systems function, software developers are
adopting the publish/subscribe communications model because it supports event-
based computing. By mirroring the way in which information flows in the business
world, applications can approach the real-time processing capability that businesses
desire. The event-based computing model automatically notifies all active
subscribers that an event has occurred, without requiring those subscribers to
continuously poll a central repository for the information.

Here, AmbrosiaMQ avoids the fundamental problem with polling-based
implementations: if an application wants to approach “real-time” response to
events, it must poll the repository with increasing frequency. This increases server
load and network bandwidth requirements. AmbrosiaMQ’s event-based approach
provides a much better, more efficient solution for all Internet applications (as used
in this manual, Internet includes intranet, extranet, and any TCP/IP network).

100% Pure Java Interface
For Internet applications, Java is the language of choice. AmbrosiaMQ was
designed from the ground up for Java development and earned one of the first
certifications as 100% Pure Java. Leveraging Java offers applications cross-
platform support and, in the case of a downloaded applet, removes the need to pre-
provision client computers with application code. This reduces client administration
costs and overhead, while increasing application accessibility.

Decoupled Development
Traditionally, distributed applications required tightly coupled communications,
where each application must understand the data formats, semantics, and other low-
level details of the other applications with which it communicates. AmbrosiaMQ
enables decoupled development: the developers of an application need not concern
themselves with the specifics of other applications’ communications. An
application simply publishes event information, at which point it becomes
decoupled from the process. All other applications interested in that event
automatically receive the published information. Only the conveyance of the
information — not what other applications do with it — matters to the original
publishing application.

As additional applications require notification about a particular type of event, they
simply subscribe to the subject of that event. Without any modification to the
original application, AmbrosiaMQ handles event notification to the additional
subscribers. From a developer’s perspective, this simplifies the development
process when integrating a new application into an existing suite of applications.

Chapter 1: Introduction Advantages of

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 17

Abstraction of Communications
AmbrosiaMQ handles the communications details for distributed computing,
including the management of sockets and ports, protocols and semantics, and
message transportation.

Unlike many traditional applications, AmbrosiaMQ applications send event
information as messages. In the past, applications typically shared information
indirectly by using an underlying database to store and retrieve shared data
structures. Using AmbrosiaMQ, integrated applications need only agree on a
common set of messages and message formats —not the numerous assumptions
required to share database tables. Furthermore, there are no shared database issues
such as data contention, locking, or read consistency, because the database is no
longer used to simulate information flow between applications

Location Transparency
AmbrosiaMQ relies on message brokers to route messages. In this system, the
publishing applications need not know the specific destination(s) for their messages.
The AmbrosiaMQ Message Broker matches a message’s subject against subscriptions
submitted by interested client applications. The client can be anywhere on the
network. As new subscribers join or leave the system, AmbrosiaMQ delivers
messages without any reconfiguration of the publishing application.

Modular Architecture
AmbrosiaMQ implements communications using a hub and spoke topology.
Message brokers act as hubs by routing messages to client applications (on the
spokes), implementing policies, and supporting central services such as security and
administration. This modular architecture can easily accommodate most topologies
and growth patterns.

Push and Respond
Traditional applications search for required information by polling. Many
applications claim to use push technology; however, the push method is usually
implemented using polling and is typically a one-way communication.
AmbrosiaMQ implements true proactive push technology and goes beyond just
delivering information about events as they occur, to providing applications with
the ability to respond to and act upon those business events.

Quality of Service
Client applications specify a message’s Quality of Service (QOS), or delivery
semantic, for a particular subject. AmbrosiaMQ sends messages with either reliable
or guaranteed delivery.

With reliable delivery (i.e, at-most-once delivery), AmbrosiaMQ will deliver a
message to each subscribing client that is currently connected, as long as there are
no application or network failures. In some environments, reliable delivery offers

Advantages of Chapter 1: Introduction

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 18

the most appropriate QOS. For example, if an application drops a stock quote, the
user may not care since another will arrive in seconds. The default QOS is reliable
delivery.

If the user needs assurance that a message will be delivered, the application
developer can use guaranteed delivery (i.e., at-least-once delivery). Guaranteed
delivery assures that AmbrosiaMQ will deliver the message even in the event of an
application or network failure.

In addition to these basic QOS semantics, AmbrosiaMQ supports many other
special QOS features including discardable delivery, prioritized delivery, load-
balanced delivery, and so forth. These capabilities provide the developers with a
high degree of flexibility to design their applications according to the business
requirements.

Multiple Communications Models
AmbrosiaMQ’s Client API, the com.u1.client package, offers a variety of
communication models: publish/subscribe, solicit/response, and request/reply.
These communications can operate either synchronously or asynchronously,
depending on whether or not the developer wants a thread to block while waiting
for information.

Transactional Services
Several classes of applications require grouping individual tasks into a single,
coordinated “unit of work.” This grouping of tasks is called a transaction.
AmbrosiaMQ supports these applications by acting as a participant or resource
manager in a coordinated transaction, though it is not itself a transaction processing
(TP) monitor. AmbrosiaMQ coordinates the publication of a group of messages in
the transaction such that it sends those messages if and only if the rest of the tasks in the
transaction commit. AmbrosiaMQ implements a two-phase commit protocol, which
guarantees that it sends either all or none of the messages in the group.

Comprehensive Security
Developers can build information systems that enforce their security policy easily
and effectively. AmbrosiaMQ does not require any preexisting software on the
client. The comprehensive security subsystem of AmbrosiaMQ allows developers
to easily implement their security policies with respect to:

• Secure identification and authentication

• Authorization and access control

• Privacy and integrity protection using encryption

• Integration with an existing authentication infrastructure

Chapter 1: Introduction Advantages of

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 19

Performance Oriented
AmbrosiaMQ strives to be very efficient with regards to network utilization. The
primary design principle for AmbrosiaMQ has been to send as little data as possible
and only send relevant data. AmbrosiaMQ’s dynamic subject-based routing only
delivers messages to active subscribers. If a message has to traverse multiple hops
to serve more than one client (multiple subscribers), then a single message is sent
across the common routing segments. Only at the last broker is the message
dispatched to the individual subscribers. In addition, AmbrosiaMQ transparently
compresses messages above a programmable threshold using LZ compression.
Small messages are automatically batched to improve network efficiency.

Multiple Wire Protocols
Applications can connect to an AmbrosiaMQ message broker using a variety of
wire protocols. The protocol choice is transparent to the client process;
AmbrosiaMQ supports TCP (plain text), and SSL protocols. Protocol selection is
primarily based on efficiency, security, and network topology considerations. The
TCP (plain text) protocol is primarily used for internal (intranet) clients and
applications. Although, the protocol is plain text, sensitive messages (e.g.,
authentication) are securely transmitted using strong encryption, but normal
messages are transmitted in the clear. The SSL protocol is primarily used by
external clients and is suitable for use over the Internet.

Intra-Process Messaging (IPM)
AmbrosiaMQ supports local loopback connection IPM (intra-process messaging).
This results in a connection that directly maps the client sender to the client listener.
There is no broker involved, so the application can publish and handle messages
within its own context.

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 20

Evolving Roles of AmbrosiaMQ
AmbrosiaMQ was designed to be a general-purpose infrastructure solution for
building applications for the Internet/intranet. Its event-based communication model
provides powerful tools to coordinate information flow by channeling information
between applications in the same manner that an organization processes events. It is
best suited for applications carrying a broad variety of critical business information
and requiring many-to-many communications.

AmbrosiaMQ assists developers by providing the communication infrastructure
beneath applications that manage an organization’s business processes: linking
mobile workers in a virtual team; developing electronic markets; linking business
partners together (for example, with supply chain management); sharing knowledge
in service organizations; and optimizing the flow of data within or between
functional departments.

Electronic trading and backend interchanges are well suited to make use of an event
management system, such as AmbrosiaMQ. These systems are extremely
demanding from a performance, security, and reliability standpoint. Middleware
often provides a software layer where common solutions and optimizations can be
implemented so that all products making use of the middleware inherit the benefits.

AmbrosiaMQ’s multicast-like delivery of shared messages is particularly well
suited for volume distribution of frequent update of information, such as pricing in
an electronic trading system. This mechanism allows an update to be published
once by a backend service, but be delivered to potentially hundreds of clients.
Message delivery is optimized so that only a single message is sent across
transmission segment that is common to multiple subscribers. This strategy makes
the backend services extremely efficient, and greatly reduces the network load by
eliminating redundant messages.

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 21

2
AmbrosiaMQ Event

Management System

Producers create goods. Consumers purchase goods. These basic events represent
part of the constant flow of information that businesses must manage. Events
impact the entire business process, not just specific functional departments. To
reflect the pervasive impact of events, organizations require a comprehensive Event
Management System (EMS). An EMS handles the flow of information throughout
the organization, delivering critical information to those who need to act on it.

This chapter focuses on the most important aspects of AmbrosiaMQ’s EMS: what it
is, how it works, and how to manage it to best ensure efficient communication of
data between your applications. To help give you an idea of how you can use the
AmbrosiaMQ EMS, we have also included a section showing how some very
different business situations take advantage of AmbrosiaMQ’s capabilities.

Application Components of the EMS Chapter 2: AmbrosiaMQ Event Management System

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 22

How the Event Management System Works
Within an event management system, business applications focus on providing their
specific, function-oriented capabilities while the EMS manages the inter-application
event flow. A robust EMS must support an application’s ability to capture, manage,
and communicate the constant flow of business events. AmbrosiaMQ provides a
foundation for an EMS by communicating event information between applications
and providing services to support these communications.

Developers can link applications to the event management system by using the
AmbrosiaMQ client Application Programming Interface (API). Interfacing with
AmbrosiaMQ reduces the communications complexity of applications and enables
developers to quickly add event-based communications to these applications. Using
the AmbrosiaMQ client API, a business application communicates with other client
applications or services through a common message broker.

In addition to the client application that provides business logic, this system includes
several other components. Figure 2-1 illustrates communications in an EMS between
the client applications, the message broker, and such services as Security and
Administration services.

Figure 2-1 The Event Management System

The system can grow in a modular manner by adding client applications, services,
and plug-in options. The message broker acts as a hub, supporting multiple
concurrent client applications, services, and plug-in options.

Chapter 2: AmbrosiaMQ Event Management System Application Components of the EMS

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 23

Application Components of the EMS
The AmbrosiaMQ Event Management System (EMS) builds on these key
components:

• AmbrosiaMQ Message Broker

• AmbrosiaMQ Client Applications

• AmbrosiaMQ Services

AmbrosiaMQ Message Broker

As the heart of the system, the message broker routes event-based information (i.e.,
messages containing event data) and supports a framework for services. The broker
coordinates the flow of events as client applications publish information, delivering
it to all other applications that need that information. The broker upholds quality of
service policies to ensure guaranteed delivery on selected subjects.

The message broker manages connected client applications, applications’
subscriptions, and the overall subject hierarchy used by client applications. Client
applications and the message broker communicate through the API specified in the
com.u1.client package. Please refer to the Javadoc reference for additional
details.

AmbrosiaMQ Client Applications

A developer builds a software application to address an organization’s business
needs. This client application participates in the EMS if the application uses
AmbrosiaMQ. The Java application simply imports the AmbrosiaMQ
com.u1.client package so that the developer can instantiate the appropriate
objects and call the relevant methods which establish the client-side
communications in the EMS.

A developer’s application can take advantage of the AmbrosiaMQ client package in
one of two ways: an application uses the package pre-provisioned on a user’s local
machine, or an applet downloads the specific package classes from its HTTP server.
Once on the local machine, the applet uses the client API to connect with the
message broker on the server to join the EMS.

For additional details, please refer to the Javadoc description of the
com.u1.client package.

AmbrosiaMQ Services

The third component of the AmbrosiaMQ system consists of services. From an
architectural perspective, each service uses the AmbrosiaMQ architecture to provide
value-added services to the overall system. Some of the services provided by the
AmbrosiaMQ broker are: authentication, message security enforcement, duplicate
client detection and conflict resolution, monitor (queues, clients, performance), and
logging. Please refer to the Administrator’s Guide for more details.

Application Components of the EMS Chapter 2: AmbrosiaMQ Event Management System

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 24

Administration Console

The Broker Administration Console (BAC) complements the core software of the
message broker by providing a graphical user interface (GUI) to monitor
AmbrosiaMQ-based applications, services, and the AmbrosiaMQ system itself. This
interface provides the system administrator with the tools necessary to monitor,
diagnose, and correct problems in a variety of areas. A single console can be used to
administrate the entire AmbrosiaMQ network. AmbrosiaMQ exposes an
Administration API for situations that require integration with an existing system
management framework.

Location of the Application Components

One or more AmbrosiaMQ Client Applications may reside on the end user’s
computer. The end user can also download one or more applets from an HTTP
server. In this way, a single user’s applications can communicate with each other or
with other users’ applications.

On or more brokers can reside anywhere on the network. The broker network,
known as the Interbroker Network provides a virtual hub, permitting fault-resiliency
and efficient load balancing.

Chapter 2: AmbrosiaMQ Event Management System Managing Event Information

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 25

Managing Event Information
The EMS components communicate event-based information; this permits
applications to parallel the flow of information in a business process. AmbrosiaMQ
provides a set of objects to define the relationships between application components
and to enable the applications to communicate. The next chapter, “Communication
Models,” describes how AmbrosiaMQ enables developers to manage these objects.
Figure 2-2 illustrates the conceptual layout of the objects used by AmbrosiaMQ for
communications. The following pages explain these objects in general terms. For a
definition of these objects in a programming context, please refer to the Javadoc
documentation.

Figure 2-2 Communication-related Objects for EMS Relationships

Connection
The client application and message broker establish a connection for
communications. This connection is analogous to a channel through which multiple
sessions can flow, carrying a wide variety of messages. Typically, each application
opens a single connection to a broker. One or more message handlers may be
associated with the connection.

Credentials
The system identifies the end users of AmbrosiaMQ client applications by their
credentials, which are based on the user's name and the user's password
(AmbrosiaMQ supports other forms of authentication through the pluggable JAAS
framework). Credentials serve as the basis for authentication and access control
within AmbrosiaMQ’s Security model.

Managing Event Information Chapter 2: AmbrosiaMQ Event Management System

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 26

Message
A message carries information about business events. It consists of a subject and a
body with the actual information. A client application creates a message, associates
a subject with it, populates it with event data, and publishes it to the broker.

Label
A label is associated with a message. It contains routing information and optional
message attributes. It can also contain delivery (Quality of Service) attributes.

Message Handler
As part of the client application, the message handler receives and “handles” events
forwarded from the broker. The message handler uses a different thread and listens
in its own session in a connection with the broker. Every client application must
have at least one message handler, the so-called default message handler, as a catch-
all to handle all delivered messages, though developers can define a message handler
for each specific subject or type of expected event.

Session
Every session represents a single context of communication between the broker and
client application. Client applications can create multiple sessions in which to
perform work. Each connection has a default session associated with it. Each
message handler runs in a separate session.

Subject
A subject identifies a specific category of event-based information. Subjects
provide the common link between applications and serve as the key for the broker
to route messages. Subjects can be flat or multi-level (hierarchical) with dots to
separate the levels. For example, many biologists use a multi-level classification
scheme to create specific “subject” names for life forms based on the format:

kingdom.phylum.class.order.family.genus.species.

Around this schema, you could build a subject tree to include a subject such as:

“Animalia.Chordata.Mammalia.Carnivora.Felidae.Felis.catus.”

AmbrosiaMQ does not limit the number of subjects, the length of the subject name
in a layer, or the number of layers in a particular subject name. However, when
using guaranteed messaging the database imposes a 255 character limit on the
length of each subject level.

Chapter 2: AmbrosiaMQ Event Management System Managing Event Information

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 27

Subject Tree
The set of subjects registered by client applications with the message broker creates
a subject tree. Though a subject tree can be flat, it typically builds from one or more
root subjects, adding other subjects in levels of parent-child relationships to create a
hierarchical naming structure. AmbrosiaMQ does not limit the depth of a subject
tree or the number of root subjects.

Each connection uses a subject tree that can overlap with those of other client
applications. By referring to subjects within the common subject tree(s), the
message broker can route messages between applications.

Subscription
The client applications register subscriptions with the message broker to receive
messages published on a particular subject or set of subjects.

Following an Event through the System Chapter 3: AmbrosiaMQ Event Management System

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 28

Following an Event through the System

The following scenarios describe how events (business information) can travel
through the EMS:

• within a retail stock brokerage organization;

• at an oil extraction and refining organization - generating event data and
real time feedback without human intervention;

• within a retail inventory tracking system - generating event data and real
time feedback between multiple information producers and consumers.

Scenario 1: Basic Event Management

This scenario describes a basic situation: event information traveling through the
event management system at a retail stock brokerage organization. The scenario
assumes that the account representative has installed the sales order application (or,
connected to the intranet and downloaded the sales order applet, along with the
AmbrosiaMQ Client API classes).

1. A business event occurs. A consumer discovers a hot technology firm and
places an order to purchase shares of stock by speaking with an account
representative.

2. A point of contact gathers event-based information. An account
representative completes a form in the sales order application.

3. The point of contact evaluates the event’s context. The application
publishes a request for reply based on information entered in the sales
form. The message broker receives the message on the subject
“consumer.check” and forwards it to all client applications with active
subscriptions for that subject. In this case, the accounting department
checks the consumer’s accounts and credit line to verify funds can support
the stock purchase. The accounting department replies to the request with
an approval. Likewise, the compliance department and the risk
management departments receive notice of the trade. Both these
departments decide the trade meets their criteria. At this point the applet
can move the business process forward.

4. The point of contact notifies the organization. The sales order application
handles the reply (the credit verification and trade approval) by publishing
a message on the “equity.buy” subject.

5. The organization acts on the information. The trading application on the
exchange floor subscribes to the subject of this message. It executes the
buy, then publishes information about the purchase to the
“equity.buy.price” subject.

6. The organization propagates information on the event and takes actions
for closure. Several applications receive information on this subject. The
client management application adjusts the consumer’s records in the

Chapter 2: AmbrosiaMQ Event Management System Following an Event through the System

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 29

database to reflect the purchase. The accounting application issues an
invoice for the stock and logs a receivable. A payroll application adjusts
the account representative’s commission.

7. When the environment changes, this system can react without changes to
the existing applications. If the securities firm were to merge with another,
their applications could join the EMS by subscribing to the subjects of the
above messages. This requires no modifications to the sales order
application, the trading system, or any application existing within the
EMS.

Scenario 2: Event Management without Human Intervention

Scenario 2 again illustrates event information flowing through the event
management system with an added twist: this oil extraction and refining
organization’s setup demonstrates the generation of event data and real time
feedback without human intervention.

1. A business event occurs. In a remote stretch of desert, derrick number
9,876 extracts oil from an underground field. Several diagnostic devices
measure properties of the oil such as temperature, volume and pressure.

2. A remote terminal unit publishes event-based information. Linked to the
diagnostic devices, an application on an embedded microprocessor
publishes this information on the subject “oil.production.9876” over a
satellite link to a message broker located at a control facility. The message
broker distributes the information to all subscribers.

3. The backend service aggregates all information. A backend application
subscribes to “oil.production.*” and receives all production information.
The application uses JDBC drivers to insert oil production information into
a database on the corporate network for future analysis. This AmbrosiaMQ
client application has been implemented as an AmbrosiaMQ service,
giving authorized users the convenience of remote administration and
configuration with the Administration Console.

4. A crisis monitoring service alerts managers and remotely adjusts controls.
Another service also receives and reacts to the real time event information.
This service checks the information in messages it receives against
predefined parameters. If any variables exceed bounds, the service
publishes several messages:

• a message goes to another service, which handles the message by
sending an alert to a manager’s beeper with relevant information;

• a message is directed to the source of the out-of-bounds data,
instructing it to reduce the production flow to a minimum level
until a human can intervene in the process.

5. An executive information system displays corporate assets in real time. An
applet can subscribe to all oil related messages and portray this data
graphically as part of an executive information system. Now, executives
can log on from any web browser and enter their user name and password
to view the current state of production, instead of waiting to view a
monthly report six days after the month’s close. This can facilitate

Following an Event through the System Chapter 3: AmbrosiaMQ Event Management System

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 30

decision-making and permit adjustments to production as market
conditions change.

6. Balancing processes across functional areas. In this case, the organization
has separate groups responsible for extraction, distribution, sales to
refineries, and establishment of inter-group transfer prices. Each of these
groups actually requires timely information to optimize the organization’s
success. Each group uses different software systems, which the event
management system bridges. With the EMS, transfer prices can reflect real
time changes from a number of data sources:

• production from locations with different levels of various elements or
compounds;

• available transport capacity and the actual deployment location of
transport vehicles;

• availability of pipeline capacity; and

• regional demand from refineries.

Scenario 3: Event Management between Multiple Systems

In this scenario, event information travels through the event management system in
a retail inventory tracking system. This particular example demonstrates the
generation of event data and real time feedback between multiple information
producers and consumers.

1. A business event occurs. An irate customer stomps up to an unsuspecting
cashier and fumes: “I’ve been to five different stores! Doesn’t anyone sell
the blue super widgets?”

2. Query for real time information. The cashier smiles and turns to his
terminal. From an applet in a web browser, he enters a query for inventory
information to find in-stock super widgets from related stores in the area.
The applet solicits for data on a subject such as “inventory.in
stock.area51.super widgets”. The message broker distributes the
information to other stores who subscribe to this subject.

3. Receive replies from other applications. The applet then receives responses
from the other stores. Thus, the cashier can quickly provide a list of nearby
stores in the chain that have the required item.

4. Publish sales data. The store sells a product and publishes information
about this event. Other area stores, the area warehouse, and various
corporate applications might subscribe to learn about this type of event.

This event management system may share this same subject tree to communicate
events that impact inventory with a number of other applications:

5. Centralized inventory tracking service. A backend application subscribes
to “inventory.#” and thus receives all events that change the inventory
published by stores and warehouse from all areas. The application uses
JDBC drivers to insert inventory information into a database on the
corporate network.

Chapter 2: AmbrosiaMQ Event Management System Following an Event through the System

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 31

Other applications can request information for analysis by management. Buyers
could subscribe to this subject to determine which types of items are popular.
Accounting could use this to track assets. The warehouse could use this to
determine which stores need restocking.

6. An executive information system displays corporate assets in real time. An
applet can subscribe to all inventory messages and portray this data
graphically as part of an executive information system. Thus, executives
can log on from any web browser and enter their user name and password
to see the current levels of merchandise, rather than wait to view a monthly
report six days after the month’s close. This immediate access to current
information can facilitate decision-making and permit adjustments to
production as market conditions change.

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 33

3
Communication Models

Traditional communication models involve demand-driven request/reply “polling”
to access information, which is then transferred over a point-to-point topology. This
chapter takes an in-depth look at how AmbrosiaMQ combines the benefits provided
by traditional models with the innovations of publish/subscribe “push” technology,
offering real time transmission of business events. Application developers will
appreciate how AmbrosiaMQ’s hub-and-spoke topology simplifies coordinating
client application interactions, as well as providing for easy integration of future
applications. On the basic level of individual message transmission, AmbrosiaMQ
offers guaranteed delivery of messages sent on important subjects.

Publish/Subscribe Chapter 3: Communication Models

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 34

Publish/Subscribe – Event-Based
Communications

To more closely model how business systems function, AmbrosiaMQ’s
publish/subscribe communication model supports event-based computing. As
events occur, the message broker proactively routes published event information to
interested client applications. By mirroring the way in which information flows in
the business world, applications using AmbrosiaMQ approach the “real-time”
processing that businesses require in order to remain competitive.

In the publish/subscribe paradigm, publishers do not know the number of
subscribers. Furthermore, the publishers need not know the identity or location of
subscribers. Likewise, subscribers do not need to know about publishers. This
implies an anonymous communications architecture abstracted via the message
broker.

Consider the case of how information about a new hire for a sales department
propagates throughout an organization. Each department in the organization does
not call up (poll) the human resources (HR) department every fifteen minutes to
inquire about the status of new hires for the sales team. The departments wait until
the HR staff enter the information about this event and publish this as a message
over the intranet. Other authorized departments can express an interest in the hiring
of a new employee by subscribing to the subject “employee.hire.sales.”
Unbeknownst to HR, the subscribers might include a variety of departments:
facilities, office management, marketing, information services, payroll, and sales.
When HR publishes its “employee.hire.sales” message, the message broker delivers
the message to all subscribers to the subject. Upon receiving the message, the
facilities department issues a building access card; office management orders a new
desk; marketing sends product materials; information services sets up user accounts
and passwords; payroll initiates salary payment processes; and sales schedules an
accounts review. Note that departments that have not expressed an interest in this
subject do not receive the message – there is no scanning or processing of “junk
messages.” In fact, AmbrosiaMQ’s security will only permit departments to
subscribe to subjects as authorized by the system administrator.

Using the event-based computing model, the AmbrosiaMQ Message Broker
automatically notifies all active subscribers when an event occurs, without requiring
subscribers to continuously poll a central repository for the information. As a result,
a single message can trigger several different processes (or responses) among the
subscribers. As the message about new hires triggers other processes or events, any
client in the AmbrosiaMQ system can respond by publishing its own message(s). All
client applications built with AmbrosiaMQ can act as both producers and consumers of
information.

Publish/Subscribe Process

Client applications publish event-based information as messages with specific
subjects to a logically common message broker. The message broker coordinates
communication between publishing and subscribing applications by using a set of
shared subjects as keys to distributing messages. For each subject, the client may act
as a publisher, a subscriber, or both.

Chapter 3: Communication Models Publish/Subscribe

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 35

Publishing means sending a message to the broker. Any time a client application
wants to send or disperse information about an event to other clients of the system,
it simply publishes the information as a message to the broker. There may be many
publishers on a subject.

Subscribing denotes notifying the message broker of a client application’s interest
in one or more subjects. The subscription must occur before a message on that
subject gets published in order for the client to receive that message. A subscriber
can subscribe to one or more subjects; a subject may have zero or more subscribers.

The broker delivers a published message only to those client applications that have
registered interested in the message’s subject. A client application registers interest
in a particular subject by submitting a subscription to the broker. The broker itself
enforces no policy on interpreting subjects or messages. System designers and
developers must establish conventions on the use of subjects. Please refer to
“Chapter 4: Subject Names and Subject Trees.”

Request/Reply Chapter 3: Communication Models

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 36

Request/Reply – Demand-Driven
Communications

Most distributed applications today use a request/reply communication model. This
model provides a very useful approach to query for particular information.
AmbrosiaMQ implements request/reply as a special case of publish/subscribe.

Traditional implementations base request/reply on polling, which most people
characterize as “demand-driven” communications. Polling requires an application
or process to request event information at automatic intervals. A poll requests
information from a database, which can reply with the information, or with a
message that the information requested is not available. As long as an application
runs, it will continuously issue demands for information.

AmbrosiaMQ’s implementation bases request/reply on its publish/subscribe engine.
When a client application publishes a request message on a subject, multiple
subscribers registered to that subject may reply. This is unlike a poll-based request,
which typically specifies a single information source. Most messages in the
AmbrosiaMQ system use a subject for routing, but reply messages do not have a
subject. The broker routes these directly to the requestor. The publishing client
application accepts the first reply to the request; all other responses are ignored.
AmbrosiaMQ extends this basic request/reply model using the method
Session.solicit(), which permits receipt of more than one reply.

AmbrosiaMQ supports two types of request/reply: synchronous and asynchronous.

Synchronous

A synchronous request/reply is blocking – the requesting thread of the client
application must wait, though other threads in the application may continue
processing. This thread of the application will remain suspended as it waits for the
reply.

Asynchronous

An asynchronous request/reply is non-blocking – the requesting thread of the client
application may continue processing while waiting for the reply.

Chapter 3: Communication Models Connecting Applications

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 37

AmbrosiaMQ Interfaces – Connecting
Applications

The AmbrosiaMQ Event Management System (EMS) employs an event-based
communications infrastructure crafted for business applications that facilitates the
exchange of information over the Internet and intranets.

AmbrosiaMQ satisfies two basic requirements for an organization’s computing
architecture: a short term need for the rapid development and delivery of
applications and a long term need for these applications to have an adaptable
distributed infrastructure that can meet changing business requirements.

An intuitive interface promotes rapid application development. Multiple interfaces
means greater interoperability across heterogeneous environments. Most
importantly, this permits organizations to provide legacy system investments with
access to the intranet and Internet. This in turn creates new value as business event
information flows from formerly isolated data.

Java Client Package

AmbrosiaMQ is provided with a Java interface due to its unique strengths, in
particular, the Java language and Virtual Machine’s property of cross platform
support.

Request/Reply Chapter 3: Communication Models

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 38

Java Message Service (JMS)

AmbrosiaMQ includes an implementation of a 1.1 compliant JMS API to the
AmbrosiaMQ enterprise messaging system. JMS provides an industry standard API
for building enterprise messaging applications. This means portability for
applications when you change or adopt new JMS provider's messaging system.

JMS includes both a publish-and-subscribe and point-to-point messaging model.
AmbrosiaMQ supports the publish-and-subscribe interface, durable subscribers and
Queue (point-to-point) functionality.

The AmbrosiaMQ JMS implementation extends the JMS specification in the
following areas:

• A message selector can compare JMSDeliveryMode against more than just
'PERSISTENT' and 'NON_PERSISTENT'. This is to support future
delivery semantics such as DISCARDABLE delivery for example.

• Access to JMS is obtained by industry standard JNDI. By convention JMS
clients find administered objects in a namespace using JNDI.

C/C++ Client Library

AmbrosiaMQ supports C language clients. This client is available for Windows NT,
Windows 2000, Windows XP, and Solaris.

The AmbrosiaMQ C/C++ client is a wrapper for the Java client. The C client
package calls (and is called by) the Java client. The Java Native Interface (JNI) is
used to enable communication between the Java client and the C client. Through
JNI, the C/C++ client can invoke methods in the AmbrosiaMQ Java client. The Java
client will then perform the required operation and communication with the
AmbrosiaMQ Message Broker, returning any results to the C client.

This architecture requires a Java Virtual Machine that implements JNI and that the
AmbrosiaMQ Java client software be installed on all hosts whose applications will
use the AmbrosiaMQ C client.

The C/C++ client API closely follows the calling interface of the AmbrosiaMQ
native Java API.

Chapter 3: Communication Models Quality of Service

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 39

Quality of Service
AmbrosiaMQ supports many types of publication/delivery semantics: reliable
delivery, discardable delivery, guaranteed delivery, load balanced delivery, and
transactional publication. Each type offers a different Quality Of Service (QOS)
and can further be customized via various attributes such as message priorities,
message expiration, and in the Summer of 2007 Most Recent Value (MRV). Each
client application can independently configure the type of message delivery for a particular
subject. The client application developer should consider business requirements when
deciding on the QOS for each subject or message.

Reliable Delivery

Reliable delivery operates in a manner similar to all basic TCP/IP communications.
It offers at most once delivery of a message to each subscribing client. Reliable
delivery means that messages arrive at each subscribing client that is currently
connected, except in the event of a network or application failure. If a failure
occurs, delivery may not occur. AmbrosiaMQ uses reliable delivery by default. The
message producer can ensure reliable delivery by publishing messages with a
priority level of 2 (reliable priority).

Discardable Delivery

Discardable delivery offer maybe once message delivery. Discardable delivery
allows AmbrosiaMQ to drop messages in the event that the system encounters a full
delivery queue. To avert exceeding the configured queue limits on a message
broker, AmbrosiaMQ will automatically drop the oldest discardable messages to
make room for new messages. The message producer can select discardable
delivery by publishing messages with a Message Label deliveryMode option set
to DISCARDABLE.

Discardable delivery is primarily used for time sensitive messages such as product
price updates in an electronic trading system. Use of the discardable delivery
feature allows the system to automatically adapt to clients that do not have the
network capacity to receive all of the messages that they are subscribed to, by
allowing AmbrosiaMQ to drop the oldest discardable messages.

Load Balanced Connections

AmbrosiaMQ implements a load balancing connection mechanism which enables
the distribution of connections over any number of available brokers. AmbrosiaMQ
supports four modes of load balanced connection as described below:

• LB_LOCAL_SEQUENCIAL

• LB_LOCAL_RANDOM

• LB_SERVER_SEQUENTIAL

• LB_SERVER_RANDOM

Customizing Communications Chapter 3: Communication Models

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 40

The flag word LOCAL implies the first connection is also the final connection. No
server load balancing is done.

The flag word SERVER means that once the initial connection is made, the broker
returns an ordered list, based on the inter-broker load balancing pools. The initial
connection is then closed, and a final connection is made by iterating through the
broker ordered list until a successful connection is established.

The flag word SEQUENTIAL results in the initial connection being made by trying
the client specified list of brokers in order until a successful connection is
established.

Finally, the flag word RANDOM means that the initial connection is made by
randomly ordering the client specified list of brokers, then iterating through the
randomly ordered list until a successful connection is established. . Note that
LB_SERVER_RANDOM randomizes the client’s list for the initial connection to a
broker; the final connection is made by sequentially selecting a broker from the list
that the initial broker returns.

Load Balanced Delivery

Load balanced delivery allows a message to be delivered to one and only one client
that has subscribed to a message subject with the load balancing subscription option
set. The load balancing delivery option is a convenient mechanism for building
clustered services where it is important that one and only one service handler take
action upon a particular message. This mechanism provides the additional benefit
of transparent failover; that is, if a participant in the load balancing subscription
pool becomes unavailable (loses its AmbrosiaMQ connection), then messages are
automatically routed to the remaining participants in the load balancing pool.

Chapter 3: Communication Models Quality of Service

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 41

Guaranteed Delivery

Guaranteed delivery offers at least once or exact once message delivery.
AmbrosiaMQ is designed with an optimistic forwarding algorithm that first logs a
guaranteed message to a persistent store then forwards the message to subscribing
clients. After the client processes1 the message, it sends an acknowledgment back to
the message broker to verify receipt. Note that guaranteed delivery means more
than simply placing a message in the client’s message queue — only after the client
acknowledges the message does the system automatically verify that delivery occurred.

In the case of a network or application failure, the message broker re-delivers
messages to each client that has not acknowledged receipt. This ensures that the
AmbrosiaMQ system will deliver critical information.

Subscribing clients specify guaranteed delivery. For example, if a client application
subscribes to a subject assigned with guaranteed delivery, then delivery is
guaranteed to the client. Publishing clients need not worry about guaranteed
delivery; all synchronous publishes are implicitly guaranteed (to the broker)
because they are synchronous. As long as the subscriber uses guaranteed
subscriptions, then all messages from the publisher are guaranteed to the subscriber.

Exact once delivery requires that a client explicitly acknowledge guaranteed
messages. Once the method Session.acknowledge(Message) returns
control to a client application, AmbrosiaMQ will not deliver the acknowledged
message again.

Transactional Publication

AmbrosiaMQ supports transactional publication of a group of messages. The
messages within a transaction (unit of work) are published if and only if the rest of
the tasks in the transaction commit successfully. AmbrosiaMQ supports a two-
phase commit protocol (2PC), which guarantees atomic publication – it sends either
all or none of the messages in the unit of work.

Subscription Recovery

AmbrosiaMQ applications can indicate that a subscription should be re-entered
after the application disconnects (either normally or abnormally) and subsequently
reconnects. This feature can be controlled on a subscription-by-subscription basis
and is only relevant for non-guaranteed subscriptions (guaranteed subscriptions
need not be re-entered).

1 The receiver can acknowledge the message automatically and immediately after receipt, or the
application developer can choose to explicitly acknowledge the message at any arbitrary time during the
handling of the message.

Advantages of Chapter 1: Introduction

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 42

Customizing Communications
Communication between applications may be additionally customized using the
AmbrosiaMQ client API and various system configurations. The primary
publication and delivery options are summarized as follows:

Message Priority

AmbrosiaMQ supports message delivery priorities. A message producer
determines the priority of a message when it publishes a message. Higher priority
messages are delivered before lower priority messages. AmbrosiaMQ guarantees
the order of messages from one publisher within the same priority level.

Message Expiration

AmbrosiaMQ supports message expiration. This limits the life of messages within
the interbroker network. Message expiration is applicable to reliable and guaranteed
messages.

When a message expires, it can either be dropped or it can be sent to a system
subject. A broker configuration parameter controls this behavior. When the
parameter ENABLE_MSG_EXPIRATION_NOTIFICATION is set to false,
expired messaged will be discarded. When set to true, expired messages are
published on the system subject:

$SYS.broker.expiredMessage.original_subject_name.original_expire_time.

The body of the expired message is the body of the original message. To enable this
feature, please refer to the Administrators Guide, “Chapter 2: Message Broker
Configuration.”

Chapter 1: Introduction Advantages of

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 43

A message is considered expired when the clock at the broker machine shows a
time greater than the expiration time of a message. If a broker does not consider the
message expired and sends it to a client whose clock would claim the message to be
expired, the message is delivered to the client anyway. That is, the client's clock has
no part in determining whether a delivered message has expired. Note, however,
that the client's clock does determine the initial expiration time when a message is
published.

Route Limits

AmbrosiaMQ supports a feature called route limits that allow a message publisher
to control the extent of the delivery for messages they publish. For a subscriber,
route limits control the extent of the propagation of their subscriptions through the
AmbrosiaMQ interbroker system.

There are three route limits available in AmbrosiaMQ. These are summarized in
the following table:

Route Limit Publisher Subscriber
Local Messages only delivered to

subscribers that are directly connected
to the local broker only.

Subscriptions propagated to local
broker only.

Collective Messages only delivered to
subscribers that are directly connected
to a broker that is a member of the
same collective as the publishing
broker.

Subscriptions are propagated to
every broker in the collective.

Global Messages are delivered to any
subscriber that is reachable via the
interbroker network, including inter-
collective deliveries.

Subscriptions are propagated to
every broker reachable in the
interbroker network. Includes inter-
collective subscriptions.

Client applications use the following labels to indicate route limits:

Advantages of Chapter 1: Introduction

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 44

• ROUTE_LOCAL

• ROUTE_COLLECTIVE

• ROUTE_GLOBAL

Virtual Circuits

Reliable and guaranteed deliveries satisfy the needs of many applications. However,
there are special circumstances where application developers find themselves in a
dilemma: reliable delivery is not sufficiently robust but guaranteed delivery is too
expensive. For these situations developers can leverage AmbrosiaMQ’s Virtual
Circuits. Two processes establish a Virtual Circuit (VC) through which they receive
notifications about each other’s connectivity status (i.e., up or down). Using VCs,
an application can simultaneously leverage the speed of reliable delivery and take
corrective actions when its peer cannot take delivery of the message. Note that the
messages are not actually delivered through the VC.

Applications use publish and subscribe as they would normally; the VC simply
provides an asynchronous notification mechanism that signals a change in the
peer’s connectivity status. AmbrosiaMQ further enhances this unique capability by
providing the following additional features for Virtual Circuits.

• Server Discovery Clients may open a VC with one or more servers
using a wildcard subject.

• Connection Manager AmbrosiaMQ preserves connection parameters
and automatically passes it to the VC server upon reestablishing the
circuit.

Chapter 1: Introduction Advantages of

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 45

• Weighted load-balanced servers Clients will be assigned to a VC
server from a pool based on the server’s weight.

• Round Trip Time AmbrosiaMQ exposes and API for measuring the
roundtrip time between any two communicating parties. The API
enables a VC client to determine the round trip time to the VC server.
The round trip time is reported as an aggregation of up to three legs of
the communication link as follows:

1. VC client to its local broker;

2. All the intervening brokers all the way to the local broker of the VC
server; and

3. VC server to its local broker.

• Client Multithreading AmbrosiaMQ supports parallel startup of VC
clients to multiple servers. Thus, the client's handshake with a server
completes independent of handshake completion with other VC servers.
In other words, if one server is slow starting the other circuits will not be
held up.

• Virtual Circuit Duplicate Server Detection Virtual Circuit clients
identify a Virtual Circuit server using a subject pattern. AmbrosiaMQ
will automatically disallow more than one Virtual Circuit server from
using a specific subject string.

Applications can control VC discovery and load balancing by invoking the method
setLoadBalancedMode from an instance of the VirtualCircuitClient
class. The mode may be set to either ONE_RANDOM or ALL.

The ONE_RANDOM mode will randomly establish a virtual circuit with a single
server from the pool of servers that match the wild card server subject. The ALL
load balancing mode will establish a virtual circuit with every server that matches
the wild card server subject. When using the ALL mode, VC clients will
automatically establish circuits with new servers that are started, even if those
servers were not running when the VC client was initialized.

Bulk Subscriptions and Reference Counting

Enterprise-class applications can potentially subscribe to hundreds of subjects.
Moreover, depending on the application, the subscription list can change whole-sale
rapidly. Consider and example in the financial industry where a user can switch
portfolios in an instant. As a result, the trading application that interacts with the
user must change its subscription list immediately. This involved unsubscribing
from all the subjects relevant to the current portfolio and subscribing to all the
subjects relevant to the new portfolio.

AmbrosiaMQ provides two special capabilities to easily and efficiently address
these situations:

• Array List Subscription AmbrosiaMQ exposes an API for
subscribing and unsubscribing in bulk. Effectively, the application
simply adds and removes subjects from an array. Once completed, a

Advantages of Chapter 1: Introduction

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 46

single call to the method Session.subscribe (or
Session.unsubscribe) creates (or cancels) all the subscriptions.

• Subscription Reference Counting Application developers have the
option to let the AmbrosiaMQ client software keep track of the number
of subscriptions for a specific subject. Only the initial subscription
results in communicating with the broker to enter the subscription.
Similarly, only the last unsubscribe will result in the communicating
with the broker to cancel the subscription.

Flow Control

AmbrosiaMQ has an automatic flow control system. If a subscriber cannot process
messages fast enough, the AmbrosiaMQ client will automatically generate a flow
control message to the original publisher, asking it to stop sending messages until
the subscriber sufficiently empties its queues.

Each subscribing application has two sets of queues per priority: one for
discardable messages and one for reliable (non-discardable) messages. The
application can set the sizes of these queues and set flow control parameters using
the ConnectionProperties object, which is associated with the Connection
object. The table below summarizes the available parameters.

Chapter 1: Introduction Advantages of

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 47

Property name Description Default

SUB_QUEUE_MEM_POOL_SIZE Total memory available for
reliable messages.

1,300,000 bytes

SUB_DISC_QUEUE_MEM_POOL_SIZE Total memory available for
discardable messages.

1,300,000 bytes

SUB_PER_QUEUE_LIMIT Per queue maximum in bytes
for reliable messages, not to
exceed the total memory
available

N/A

SUB_DISC_PER_QUEUE_LIMIT Per queue maximum in bytes,
for discardable messages, not
to exceed the total memory
available

N/A

FLOW_CONTROL_RESTART_THRESHOLD After message delivery has
been stopped due to an
overfull queue, the number of
bytes that must be available in
the queue before restarting in
bytes.

1024 bytes

QUEUE_ACTIVATION_THRESHOLD

Minimum number of messages
for a queue to be considered
"active" for sizing purposes

4

Advantages of Chapter 1: Introduction

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 48

QUEUE_ACTIVATION_DELAY_MILLIS How often to check active
queues to see if they have
fallen below the activation
threshold

3000
milliseconds

QUEUE_DEACTIVATION_POLL_INTERVAL_MILLIS How often to check active
queues to see if they have
fallen below the activation
threshold

3000
milliseconds

Publisher applications can control the behavior of the system with respect to flow
control as flows:

• A stoppable publisher is a publisher that is willing to stop publishing when
any of the subscribers instruct it to do so.

• An unstoppable publisher is a publisher that does not wish to be slowed
down by subscriber that cannot process messages fast enough.

A publishing application uses the String parameter PUBLISHER_STOPPABLE
to control whether or not the publisher will be paused when any of its subscriber's
queues is full. If a publisher is stopped then a message flow will be paused if any
subscribing client reaches or exceeds a queue limit. If the publisher is not stoppable
then subscribers will be automatically disconnected when their queue limit is
exceeded. The default value for this parameter is “true”, which means that
publisher will be paused when any of its subscriber's queue is full.

A publishing application has one outgoing queue per priority. When an application
publishes a message, the data is transmitted to the broker as fast as possible.
Typically, the data does not stay on the queue for long. However, when this queue
is full (for example when there is a lot of asynchronous publishing), the application
will block when it attempts to publish a message until there is space available on the
queue.

The property that controls the size of this queue is PUB_QUEUE_MEM_POOL_SIZE
and its default value is 300,000 bytes. Note that unlike subscribe queues, there is no
distinction between discardable and reliable queues. In other words, all outgoing
messages of the same priority share the same output queue.

Client Queue Size Monitoring

AmbrosiaMQ enables a client to monitor its own queue sizes via a set of APIs. The
APIs enable the client to get queue counts, sizes, and limits on for every queue of a
specific Message Handler object. In addition, based on policy, a monitoring
application can remotely request a client application’s queue parameters via a
simple request/reply paradigm.

Chapter 1: Introduction Advantages of

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 49

Client Heartbeat Monitoring

An AmbrosiaMQ broker can be configured to monitor its clients’ heartbeat and
close a connection when the client is not responsive. When the broker configuration
parameter ENABLE_HEARTBEATS is set to true, it instruct the broker to maintain
heartbeat with all of its clients. This is a global, per-broker parameter. Note that
each connection has its own heartbeat. Thus, one client with three connections will
engage the broker in three heartbeat monitoring

Message Content Selection

AmbrosiaMQ is subject-based messaging system and uses subjects for routing. This
is very efficient in that the brokers need not examine the content of the message.
Once the message is delivered, client applications will examine the content and
implement the relevant business logic. AmbrosiaMQ provides a message Selector
API for evaluating the content of the message.

The Selector language supports three modes as follows:

 STRICT_JMS, SQL92 and TYPE_CONV. STRICT_JMS. The Selector
constructors and createSelector method have an option argument where the
mode may be set. Once set on a Selector, the mode is carried through from parsing
to evaluation.

• STRICT_JMS This is the basis for all modes. It functions according to
the JMS selector syntax as defined by JMS 1.1

• SQL92 Adds SQL92 keywords DATE, TIME and TIMESTAMP. These
keywords should be followed by a string literal. The resulting SQL Date,
Time or Timestamp literal is comparable to other literals or properties of
the same type. It also adds non-standard SQL keyword REGEX. This is
similar to SQL’s LIKE, but uses regular expression notation.

Advantages of Chapter 1: Introduction

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 50

• TYPE_CONV Adds automatic type conversion of Strings to other types
including Long, Double, Boolean and Date.

The AmbrosiaMQ Selector language provides the following extensions for
additional flexibility:

• Regular expressions for content searching, and

• Support for time zones this capability is made available as an optional
field on String literal to java.util.date comparisons. The default
date format for a String literal is: yy-MM-dd HH:mm:ss[.sss] [Z]. In
addition to the default date formats, Selectors support a SelectorOptions
object that allows the date formats to be predefined, using
SimpleDateFormat objects, for the following date field types:

o java.util.Date

o java.sql.Date

o java.sql.Time

o java.sql.Timestamp

Multiple SimpleDateFormat objects may be assigned to each type. The first
format for a specific type that parses to a non null date value will be used.

Stream Transfer

The stream transfer feature allows the application to download or upload a stream
of messages or data from a server. The transfer is done in the background and
provides for efficient downloading/uploading of large data sets.

Chapter 1: Introduction Advantages of

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 51

The client side API consists of four methods on a Connection object:

downloadMessageStream Downloads a stream of messages from a server.
uploadMessageStream Uploads a stream of messages to a server.
downloadDataStream Download a stream of data from a server.
uploadDataStream Uploads a stream of data to a server.

The server side is implemented by constructing a MessageStreamServer or
DataStreamServer with a subject and a request handler. The request handler is
passed StreamRequest objects that can be used to retrieve client information and
accept or reject the requests.

Fast Serialization, Dictionaries, and Catalogs

Fast Serialization is based on Java serialization. It has native support for many java
objects, including wrappers for primitive types, Collection and Map types, Date,
String, BigInteger and BigDecimal. Support for other types can be added by
implementing AmbrosiaMQ’s FastSerializable interface. AmbrosiaMQ
automatically uses Fast Serialization. If you wish to disable this, set the Java
property EnableFastSerializer to false.

Fast Serialization can leverage a Dictionary. A Dictionary stores commonly used
objects so that when an object is serialized only its index is written to the stream.
This saves both space and time. The Dictionary must be available (i.e., pre-
distributed) to any process that wants to read a message whose contents were
serialized using that Dictionary.

Advantages of Chapter 1: Introduction

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 52

A Catalog is a repository for Dictionaries. When an application reads a message, if
a Dictionary argument was not given and the object was written with a Dictionary,
AmbrosiaMQ will attempt to locate the Dictionary in the catalog.

Intra-Process Messaging (IPM)

AmbrosiaMQ supports local loopback connection IPM (intra-process messaging).
This results in a connection that directly maps the client sender to the client listener.
There is no broker involved, so the application can publish and handle messages
within its own context.

Because there is no broker participating in an IPM connection certain AmbrosiaMQ
features are inherently not relevant and are not supported. These include:

Subscribe – An application can subscribe to subjects, but it will have no filtering
effect, it just returns as if the subscribe operation succeeded

Unsubscribe - An application can unsubscribe, but it will have no effect, it just
returns as if the unsubscribe operation succeeded

ErrorView – Will throw an exception if an attempt is made to construct one.

Transactions – Will throw an exception if an attempt is made to call beginWork on
a session.

VirtualCircuits – Will throw an exception if an attempt is made to construct a
VirtualCircuitClient or VirtualCircuitServer on an IPM connection

Guaranteed Message – This is not relevant for IPM.

Because there is no subscribe filtering, the default message handler of an IPM
connection will receive all messages whose subject is not bound to another handler.

Chapter 3: Communication Models Customizing Communications

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 53

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 55

4
Subject Names and Subject

Trees

AmbrosiaMQ communicates a business event as a message. AmbrosiaMQ
coordinates sending messages between publishers and subscribers using subject-
based routing.

Subject-based routing, among other advantages, alleviates the need for supplying
specific destinations for your messages, but it also creates a need for consistent and
organized subject names.

Following the basic rules of subject name syntax and semantics, you can create and
organize subject “trees” that will help you get take advantage of AmbrosiaMQ’s
routing and subject-based policies to build the most efficient applications. This
chapter explains the special features’ reserved names and wildcards, so you can
accomplish a maximum amount of work with a minimum amount of effort.

Subjects and Subject Trees: Structure Chapter 4: Subject Names and Subject Trees

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 56

Subjects and Subject Trees: Structure
A subject, which is a Java String, names a topic of common interest to producers
and consumers of information. In AmbrosiaMQ, the broker routes each message
based upon its subject. Almost any string of Unicode characters can act as a subject
to describe the topic category of a message. AmbrosiaMQ reserves three characters
for special use in subject names: the period (.), the asterisk (*), and the pound (#).

Individual subjects serve as elements (i.e., nodes) in a subject tree. Client
applications register a set of subjects with the message broker to create subject
trees. Though it can be flat (linear), a subject tree typically builds from one or more
root subjects, adding other subjects in levels of parent-child relationships to create a
hierarchical naming structure. The root subject “” is the root of all the root subjects.

Figure 4-1 illustrates the general structure of a subject tree. The structure of the tree
in the figure follows a format with levels of increasing granularity:
“country.state.city.” Each string in the figure represents a node on the subject tree.
Complete subject names aggregate nodes at one or more levels in the subject tree;
levels are separated by the period character. Subject names fully specify the path to
a specific node from the root of the tree in this format: root.level2.level3. In Figure
4-1, the string “USA” acts as a root node, the first level of a subject name for
subjects in this tree. Valid subjects include: “USA”, “USA.Alabama” and
“USA.Alabama.Montgomery.”

Figure 4-1 Subject Tree Geographic Example

Chapter 4: Subject Names and Subject Trees Using Subjects

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 57

Using Subjects
Subjects provide the key to the routing of messages between publishers and
subscribers: they provide an anonymous alternative to citing specific destination
addresses. The AmbrosiaMQ Message Broker attempts to match a subject on a
published message with a list of clients who have subscribed to that subject. The
broker delivers the message to each client with a subscription which matches the
message’s subject.

Thoughtful design of subject names and subject trees can often save time and effort
later for routine operations, including:

• subscribing to multiple subjects (see “Using Wildcards with Subjects”);

• establishing security policies (see “Inheritance of Security Policies,”
Chapter 5);

• automatically reacting to messages on a specific subject. An example
could be sending an alert to a manager’s pager (as in “Scenario 2: Event
Management without Human Intervention,” Chapter Two).

When designing subject names and subject trees, it is important to remember that
the message broker generally does not interpret or attempt to derive meaning from
the subject name itself: instead, it only uses the subject name to send related
messages to clients who have subscribed to that subject. However, an exception to
this rule exists in the case of subjects of the roots “$SYS” and “$ISYS.” The
message broker itself has registered interest to these special “administrative”
subjects, reserved for AmbrosiaMQ’s system messages.

Subject Syntax and Semantics Chapter 4: Subject Names and Subject Trees

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 58

Subject Syntax and Semantics
When building an application, the subject tree design plays a crucial role in the
application’s communication possibilities. This design should account for the
following principles of subject name syntax and semantics.

• Subject names are case sensitive (like the Java language). For example,
AmbrosiaMQ recognizes “ACCOUNTS” and “Accounts” as two
different subject names.

• Subject names can include the space character. One example might be
“accounts payable.” Spaces are treated just like any other character in
the subject name.

• Though not recommended, a subject level may be the empty string. For
example, “a..c” is a three level subject name whose middle level is
empty.

• For portability reasons, we recommend that subject names not include
the null character (Unicode \x0000).

AmbrosiaMQ applies the following conditions to the construction and content of a
subject tree:

1. There is no limit to the height or the levels of depth (number of period-
separated strings) in a subject tree.

2. There is no limit to the length of any particular level name in the tree.
However, when using guaranteed messaging the database imposes a 255
character limit on the length of the subject string.

3. There is no limit to the length of the overall string.

4. There may be any number of “root” nodes (that is, any number of subject
trees). The virtual root of all root nodes is represented by “” (i.e., the
empty set). Users may not publish on the “” root, though they may
subscribe to it.

5. AmbrosiaMQ reserves the subject trees rooted at “$SYS” and “$ISYS.”

Chapter 4: Subject Names and Subject Trees Using Wildcards with Subjects

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 59

Using Wildcards with Subjects
A wildcard is a lexical marker in a subject expression that can match a set of
subjects. This saves writing specific subscriptions for multiple topics, and offers
benefits to managers who may need to see information or events across several
areas. Client applications can use wildcards when subscribing to a set of subjects,
publishing on a subject, or binding a set of subjects to a message handler.

Wildcards in Subscriptions

Figure 4-2 Subject Tree for Human Resources

Using the subject tree shown above, a client application could either subscribe to a
particular subject, “employee.hire.development,” or use a wildcard to subscribe to
the set of subjects “employee.hire.#”.

Client applications can embed wildcards within a subject. Let us assume an
application developer, using the subject tree in Figure 4-2, wants the application to
track the changes in employees in the sales department. A subscription to the
subject expression “employee.*.sales” would specify the subject set including both
“hire” and “fire” messages.

AmbrosiaMQ also interprets multiple wildcards. A subject expression can include
several asterisks and pounds as long as the use conforms to the guidelines stated
above. Examples of valid subjects include using asterisks to specify a number of
levels after a certain node such as “employee.*.*,” rather than using the “#” which
would match zero or more levels. If Figure 4-2 were the top of a larger tree and a
developer wanted to know all the issues relating to staff in the sales department,
s/he would use “*.*.sales.#” as the wildcard subject expression.

Wildcards in Publications

AmbrosiaMQ supports a unique feature called wildcard publishing. Wildcard
publishing is especially useful for applications that want to broadcast notifications
messages to multiple subscribers. Consider a scenario in which three applications
have subscribed to three different subjects at a common root as follows. Application
1 subscribers to exch.price.1, application 2 subscribers to exch.price.2 and

Using Wildcards with Subjects Chapter 4: Subject Names and Subject Trees

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 60

application 3 subscribers to exch.price.3. Suppose that a monitor application
determines that the exchange server is down and wants to notify all the subscribers.
The monitor can publish a message on exch.price.*. In this case, AmbrosiaMQ will
deliver the message to all subscribers.

Wildcards and Unsubscribe

AmbrosiaMQ uses intelligent wildcard matching for subscribe and unsubscribe
requests. An unsubscribe request will only cancel the subscription for the exact
subject. For example, suppose a client application enters two subscriptions for the
subjects a.b.# and a.b.c.#. If the client unsubscribes from a.b.#, its subscription to
a.b.c.# is unaffected (even though a.b.# matches a.b.c# and indeed any subject that
is rooted at a.b).

Wildcards in Message Handlers

AmbrosiaMQ supports the ability to have multiple message handlers in an
application. An AmbrosiaMQ connection must have at least one message handler,
the default message handler. All messages delivered to the client will be received
by the default message handler, unless additional message handlers are created and
are bound to one or more subjects.

An application uses a bind mechanism, MessageHandler.bind(subject),
to control which messages are delivered to a particular message handler. A
message handler bound to the root subject name “#” will receive all incoming
messages. By rule, AmbrosiaMQ only delivers a message to the default handler if
the message was not delivered to any other handler. If a handler is bound to “#”, all
messages will be delivered to this handler instead of to the default handler.
AmbrosiaMQ will deliver a message to more than one message handler if the
message’s subject matches bindings from multiple handlers.

Subject Space APIs

Chapter 4: Subject Names and Subject Trees Using Wildcards with Subjects

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 61

AmbrosiaMQ allows developers to leverage the capabilities of the subject syntax in
their own applications. The Subject Space API provides developers with a general
mechanism for managing key/value pairs, where the key is a subject. Application
developers can use the full subject syntax including wild card matching. Please note
that the Subject Space API is not meant to manipulate message subjects.

Chapter 1: Introduction Advantages of

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 63

5
Security

The vision of the AmbrosiaMQ security model is quite simple: offer a
comprehensive security model that can enforce security with minimum application
involvement. The two keys in this vision statement are comprehensive security
model and minimum application involvement. We believe that an application’s
compliance with a security policy is greatly enhanced if the application developer is
not responsible for enforcing it.

AmbrosiaMQ provides a complete security solution for Java applications by
offering:

• Availability of important security features out-of-the-box, with no
additional work required to implement them.

• Application design and implementation that is independent of the
security policy.

• Security applied and managed centrally via an administration tool.

Overview of Security Issues Chapter 5: Security

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 64

Overview of Security Issues
To truly leverage the Internet as a platform for business applications, organizations
need to know exactly who is accessing their corporate assets — databases and
business rules — over the Internet. Each class of user (employees, customers, partners,
and suppliers) requires different levels of access. This implies a need for two very
important facets of security: authentication (the determination of the user’s identity)
and authorization (the definition and control of what the user can and cannot do).
Information may travel many places over the network; yet confidential messages
must remain private, to prevent others from reading their content and to keep others
from secretly tampering with that content.

This first section examines existing approaches to security concerns:

Feature Security Issue

Authentication Who is the user?

Authorization What operations can the user perform?

Privacy Who can see the data?

Integrity Has the data been changed in transit?

Internet Security

Much has been said and written about Internet security or, more specifically, the
inherent lack of security on the Internet. The most popular protocol used for
security on the internet is the Secure Socket Layer (SSL) protocol.

Most secure protocols, such as SSL, deal with privacy and integrity protection.
Privacy protection ensures that only the intended recipient can view the data.
Integrity protection ensures that, if data is maliciously or accidentally changed
while in transit, the system will alert the recipient that the contents were changed.
Thus warned, the recipient will not rely on the validity of the message.

However, a secure protocol, such as SSL alone, often does not fully address the
issue of client authentication. The SSL protocol relies upon the ubiquity of digital
certificates for authentication. In many cases, SSL clients do not use a certificate
while the SSL server uses a verifiable registered certificate. This result is the SSL
client being able to authenticate that the server is registered with a trusted provider,
but the SSL server cannot authenticate the client.

In addition, a secure protocol such as SSL does not address anything with regards to
access control and mediation of application data.

AmbrosiaMQ provides a high degree of security by providing coverage in the
following areas.

Chapter 5: Security Overview of Security Issues

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 65

• Wire Protocol – (SSL)

• Identification and Authentication

• Pluggable authentication model via JAAS

• Authorization and Access Control for Message Data (User, Group level
ACLs)

• Optional per Message Privacy and Integrity Quality Of Protection (QOP)
(December 2006)

In summary, no Internet wire protocol deals with all aspects of security in one
comprehensive package. AmbrosiaMQ’s security features address all of these
issues.

AmbrosiaMQ Security Design Advantages

AmbrosiaMQ allows developers to focus on building the application — not on
implementing a security policy. Security operates independently of application code
through an easy-to-use central administration interface that manages users, groups,
Access Control Lists (ACLs), and Quality Of Protections (QOPs). This design
permits remote administration for all aspects of security.

If an organization’s security policies change, the system administrator can
manipulate AmbrosiaMQ’s security mechanisms without requiring the application
developers to rewrite any application code. By allowing security policies to change
with business needs, AmbrosiaMQ provides the flexibility that can extend an
application’s life.

AmbrosiaMQ achieves this simple yet comprehensive security because it
effectively protects subjects. By enforcing security policies by subject,
AmbrosiaMQ allows developers and system designers to indirectly address security
through their design of subject trees. Each type of event information requiring its
own security policy must have a unique subject name. Existing applications can
immediately take advantage of a new security feature as it becomes available in
future versions of AmbrosiaMQ.

The identification and authentication process is the only area of security where the
client application must address security. AmbrosiaMQ leaves the application
developer responsible for this task only: to solicit and pass to AmbrosiaMQ the
user’s credentials. Simply stated, this means that the application must solicit from
the user enough information so that AmbrosiaMQ can authenticate the user. Beyond
this aspect (a standard part of any application), the client application code does not
implement or require information for security. Instead, the system administrator
uses the Administration Console to set the security policies that AmbrosiaMQ
enforces.

AmbrosiaMQ and its security subsystem do not require any pre-existing software
on the client. All security functionality used in AmbrosiaMQ is provided through
the Java Development Kit (JDK) interfaces such as the JCE. As such, security is
built into each and every application or applet that is created with AmbrosiaMQ.
Moreover, a developer need not worry about whether the application will run
locally or as a downloaded applet. The AmbrosiaMQ security subsystem does not
require access to any local resources. The security subsystem uses either part of the
Java runtime environment or classes downloaded with the applet.

Subject-Based Security Chapter 5: Security

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 66

Identification and Authentication
When the security option is enabled, AmbrosiaMQ requires that each user be
authenticated prior to granting the user access to the application level data.
Identification is done by providing an user name created and assigned by a system
administrator. Authentication is done by having the broker verify the user’s
credentials (e.g., password) in a secure manner. Out of the box, AmbrosiaMQ
supports password-based authentication. Additionally, AmbrosiaMQ can be
configured to integrate with any authentication infrastructure that can be exposed as
a JAAS provider.

Authentication Overview

AmbrosiaMQ mutually authenticates clients and message brokers to each other. The
client authenticates itself to the broker using its password. AmbrosiaMQ’s default
authentication uses a challenge/response mechanism. During the authentication
process, the client's password is not sent over the network, this ensures that the
client’s password cannot be viewed by eavesdropping network devices. If an SSL
connection is being established, the broker conveys its X.509 certificate to the
client, informing the client of the broker’s public encryption key. The broker is
authenticated to the client through AmbrosiaMQ’s protocol by proving it knows the
client’s password without being sent the client’s password (challenge/response
mechanism). The authentication mechanism also thwarts replay attacks by including
client-side and broker-side random numbers in the challenge/response authentication
messages.

Subject-based Security
In AmbrosiaMQ, all information flow is based on subjects, as demonstrated by the
following:

• Developers organize information based on subjects;

• Applications can register their interest in consuming information by
subscribing to a subject;

• Applications can produce information by publishing messages to
subjects;

• The AmbrosiaMQ message broker routes information from publishers to
subscribers based on the subject.

The security subsystem takes advantage of the information flow’s dependency on
subjects. By protecting the subject, one can precisely and dynamically control the
flow of information. AmbrosiaMQ refers to this as subject-based security.

AmbrosiaMQ associates a security policy with every subject. The policy determines
the following:

1. Who can publish, subscribe, or attempt guaranteed delivery on a subject?

Chapter 5: Security Subject Based Security

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 67

2. Do messages on a subject need to be privacy-protected (encrypted)?

3. Do messages on a subject need to be integrity-protected (encrypted
checksum)?

Since subjects themselves are organized in a tree, the security policy of a parent
subject can be inherited by some or all of its child subjects that do not have an
explicit policy already established (see “Inheritance of Security Policies” later in
this chapter). AmbrosiaMQ enforces each security policy automatically and without
any application intervention.

Using this subject-based approach, existing AmbrosiaMQ applications will
automatically take advantage of new security functions provided in future versions
of AmbrosiaMQ.

Authorization and Access Control

AmbrosiaMQ provides the ability to control who can publish, subscribe, or request
guaranteed delivery on a particular subject or message format through the use of
Access Control Lists (ACLs). The system administrator uses the Administration
Console to define both positive and negative rights on the ACLs for specific
subjects or message formats (for more details on how to define ACLs, see the
Administrator’s Guide). AmbrosiaMQ automatically uses these ACLs as described
below.

The broker performs access mediation on a client's publish and subscribe
operations, as well as on guaranteed delivery requests. For example, when the client
subscribes to a subject, the broker gets the policy for the subject and checks to
verify that the client is permitted to subscribe to the subject. If guaranteed delivery
is requested on the subject, an access check is also performed on guaranteed
delivery during subscribe time. If either one of these checks fail, the subscribe request
is rejected and the client application throws an EUnauthorizedClient exception.

When a client publishes a message on a subject, the broker checks to verify that the
client is authorized to publish on that subject:

• If the client is not authorized, the publish request is rejected, and the
client application throws an EUnauthorizedClient exception.

• If the client is authorized, the broker delivers the message to all clients
subscribed to the subject of the message.

Access mediation is done entirely on the broker side. However, a client can check
for permission to publish, subscribe, or request guaranteed delivery on a specific
subject using the isPublishAllowed(), isSubscribeAllowed(), or
isGuaranteedAllowed() methods of the Session class.

There are three special principals included in the system: PUBLIC, Administrators,
and Administrator. Special principals are reserved principal names in AmbrosiaMQ
and hence should not be deleted or used for regular user names. The group PUBLIC
contains all users defined in the security database (i.e., all users with passwords).
This special principle is useful for creating ACLs such that all users would have
permission to perform an operation on the subject.

Subject-Based Security Chapter 5: Security

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 68

The system administrator uses the Administration Console to add new users,
groups, and policies for subjects. Please refer to the Administrator’s Guide for
further details.

Quality Of Protection (QOP)

In a future release AmbrosiaMQ will have the ability to control data protection on
messages through Quality of Protection (QOP) settings. Using QOPs, the system
administrator sets policies on individual subjects to protect message data. QOP
options consist of:

1. None - message is delivered without special protection;

2. Integrity - assures that the message is checked for possible data
corruption;

3. Privacy and Integrity - assures that the information can only be viewed
by the intended recipient(s). All messages set for privacy are also
automatically set for integrity.

By default, all messages are delivered without special protection unless the system
administrator specifies either Integrity or Privacy and Integrity.

The Integrity feature verifies that the message content upon delivery matches its
original published form. Corruption of data can be accidental or intentional.
AmbrosiaMQ uses the cryptographic checksum Secure Hash Algorithm (SHA)
algorithm to validate the integrity of message content.

AmbrosiaMQ ensures a message’s Privacy by using encryption. Encryption
scrambles the message content before sending it over the wire and restores the
original form upon delivery. If the message is intercepted before delivery (i.e.,
someone attempts to read it as it goes over the wire) the data is not in readable
form. AmbrosiaMQ encrypts messages to provide privacy using the Advanced
Encryption Standard (AES) algorithm.

For more detailed information about AmbrosiaMQ’s encryption, checksum and
message digest usage, see “Chapter 5: Security,” Administrator’s Guide.

Chapter 5: Security Subject Based Security

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 69

Inheritance of Security Policies

Since subjects themselves are organized in a hierarchical tree, the security policy of
a parent subject can be inherited by some or all of its descendent subjects that do
not have explicit policies. Therefore, it is not necessary to have an explicit security
policy associated with each and every subject. Every subject has an implicit security
policy, which is that of its parent. As an example, consider the following subject
tree:

Figure 5-1 Subject Hierarchy with Security Policies

Subject-Based Security Chapter 5: Security

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 70

The table below summarizes the Access Control List and Quality Of Protection for
each subject in the tree.

Subject Publishers Subscribers Privacy Integrity Comments
A joe PUBLIC Yes Yes Explicit

policy

A.P joe PUBLIC No Yes Explicit
policy

A.K joe PUBLIC Yes Yes Policy
through A

A.K.M joe PUBLIC Yes Yes Policy
through A.K

A.K.M.N mary, joe nat No Yes Explicit
policy

A.B allen HR Yes Yes Explicit
policy

Table 5-1 Access Control and Quality of Protection for Subjects in a Hierarchy

Security Policies and Wildcard Subjects

AmbrosiaMQ does not permit associating an explicit security policy with a
wildcard subject (e.g., A.*, which represents a two-level hierarchy and includes
A.B, A.K and A.P). The reason is due to possible conflicts between the policy of a
wildcard subject and a specific subject. However, AmbrosiaMQ does guarantee
correct access mediation when a client subscribes to a wildcard subject.

For example, consider the subject tree in Figure 5-1. A.* as a subject does not (and
cannot) have a security policy associated with it. Therefore, A.* inherits its policy
from A. As such, any user can subscribe to A.* (the subscribe ACL includes
PUBLIC). When a message is published on A.P or A.K, the message broker
delivers it to the user who subscribed to A.*. However, when a message is
published to A.B, that message is only delivered to subscribers who are in the HR
group. Moreover, if the system administrator changes the subscribe ACL of any
subject that matches A.* the broker will correctly enforce the ACL at the time of
message delivery. Effectively, subscribing to a wildcard subject has the semantics
to deliver messages on all subjects that match the wildcard and for which the
subscriber has authorization to receive.

Chapter 5: Security Responsibilities

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 71

Responsibilities
AmbrosiaMQ divides the responsibility of enforcing a security policy across three
categories. In increasing order of responsibility, the categories are:

1. Application developer — only responsible for soliciting authentication
information from user.

2. System administrator— responsible for maintaining users, groups, and
security policies for a subject tree.

3. The AmbrosiaMQ security subsystem — responsible for enforcing all
aspects of security including authentication, message protection, and
access mediation.

Responsibilities of an Application Developer

The application developer is responsible for soliciting authentication information
from the user. The developer then uses this data to establish an authenticated
connection with the Message Broker. AmbrosiaMQ provides the Credentials
class to handle the user ID and password. This class abstracts all authentication
models. Typically, before a client connects to the message broker, it creates an
instance of the Credentials class. Using the Credentials class, the
application can pass the ID and password of the user to the broker.

Responsibilities of a System Administrator

The system administrator is responsible for managing users, groups, and the
security policies of subjects. Managing the security policies of subjects includes
maintaining the Access Control List (ACL) and the Quality of Protection (QOP) of
those subjects.

Please refer to “Chapter 5: Security Administration”, Administrator’s Guide for
further details on administering security policies.

Security APIs
AmbrosiaMQ provides a rich administrative GUI for managing users, groups,
ACLs, and QOPs. However, there are circumstances in which AmbrosiaMQ’s
security must be integrated within a comprehensive security management
framework, such as an entitlement provisioning system. For these situations,
AmbrosiaMQ exposes a security API in the package
com.u1.client.SecurityAdmin. Using this API, developers can integrate
AmbrosiaMQ’s security administration with other tools.

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 73

6
Interbroker Networks

The AmbrosiaMQ EMS is a highly scalable system. A simple small system may be
comprised of a single broker with a handful of clients, whereas a complex global
system may be comprised of many coordinated message brokers serving thousands
of clients. AmbrosiaMQ’s key mechanism to building large highly scalable
systems is the interbroker network. The interbroker network allows multiple
AmbrosiaMQ message brokers to interact together and operate as if they were a
single “logical” broker.

With the interbroker architecture, each broker can register itself with other
AmbrosiaMQ brokers into a grouping defined as a collective. A broker in a
collective becomes a composite proxy of subscriptions for all of the clients
connected to that broker. Thus, AmbrosiaMQ can consolidate delivery of messages
on the interbroker network whenever a broker has more than one subscription for a
particular message subject.

For example, ten clients connect with a common broker (B1) and are all subscribed
to the subject A.B.C. When a message (M1) is published with subject A.B.C by a
client connected to some other broker (B2) in the interbroker network, only a single
copy of the message M1 is sent on the interbroker network from broker B2 to broker
B1. Once broker B1 has received the message M1, the broker will dispatch the
message to each of the clients subscribed to the subject A.B.C.

This chapter discusses the basic concepts of AmbrosiaMQ’s interbroker architecture
and provides an overview of the roles that brokers may assume within an
interbroker network.

Single Broker Topology Chapter 6: Interbroker Networks

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 74

Single Broker Topology
AmbrosiaMQ’s design departs from the traditional point-to-point communications
architecture to follow a “hub-and-spoke” design: the AmbrosiaMQ Message Broker
acts as the hub and AmbrosiaMQ-enabled applications as the spokes. Passing all
messages from the applications through the hub has the advantage of centralized
administration, security, and routing of messages. For the system administrator, this
means all communications between applications can be monitored and maintained
from a single location; for developers, each application only needs to interface with
the AmbrosiaMQ Message Broker (which loosely couples applications). A
comprehensive security model becomes much simpler to arrange when all
communications go through a central point. Message routing prevents users from
having to screen all messages locally to identify those that they need; also, an
application publishing a message does not need to know the address of each
subscriber.

Figure 6-1 graphically illustrates the advantages of a hub-and-spoke topology in
terms of logical connections between applications.

Figure 6-1 Comparing Point-to-point with Hub-and-spoke

In Figure 6-1, with six applications communicating, the system requires fifteen
connections with the traditional point-to-point design and only six connections with
the hub-and-spoke topology. The point-to-point model requires each application to
include code to interface with the five other applications; furthermore, each
application requires modification if another application joins the network. In the
hub-and-spoke model, each application only needs to include a single set of code
for communication with the message broker at the hub. The hub decouples
applications, thereby reducing system complexity and increasing system flexibility
and adaptability.

Chapter 6: Interbroker Networks Interbroker Topology

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 75

Interbroker Topology
The Interbroker architecture allows multiple AmbrosiaMQ Message Brokers to
interact with each other and operate as a single logical broker. With the Interbroker
architecture, each broker can register with other AmbrosiaMQ Message Brokers.
The broker registers as a single proxy to represent all of its application users'
publications and subscriptions. This presumes a global name space for users,
groups, subjects, and security policies. These entities can be maintained in
Relational Database Management System (RDBMS).

Administrators can easily configure and manage multiple, remote brokers using a
single Administration Console. AmbrosiaMQ’s Interbroker architecture represents a
fundamental advance in terms of scalability for AmbrosiaMQ systems. It provides
several key benefits:

• scalability to support tens of thousands of concurrent users,

• fault isolation, and

• integration of geographically dispersed locations.

Figure 6-2 Interbroker Bridges Systems

Interbroker Topology Chapter 6: Interbroker Networks

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 76

Figure 6-3 Interbroker Architecture: Collective & Collective Hierarchy

The interbroker architecture supports a variety of topologies, which developers can
adopt depending on their application requirements. Figure 6-3 shows two basic
designs including a simple collective and hierarchy of collectives that form a "tree".

A collective is a fully connected (hyper-connected) collection of brokers. System
architects can utilize single brokers, multiple brokers in a collective, or bridge
collectives hierarchically into larger structures.

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 77

Broker Roles in Interbroker Network
Deployments of AmbrosiaMQ interbroker networks can vary widely in
applications. Simple AmbrosiaMQ systems may contain only one or two brokers
hosted on a common intranet, whereas a complex system contains several
collectives, more than 50 brokers, and crosses a wide variety of network topologies
including: LAN, WAN, DMZ’s, and the Internet. To address this wide range of
possible system deployments, AmbrosiaMQ brokers can be configured to assume
various service roles that may be required for a particular system. These roles
involve security data distribution, configuration data distribution, access
restrictions, and various other specialized services.

Primary Configuration Server

The AmbrosiaMQ EMS supports the dynamic distribution of the interbroker
configuration and security data. The broker that acts as the source of the
configuration and security data is known as the configuration server. The
configuration server is responsible for providing broker connection points,
collective groupings, and load balancing information for any broker that has been
assigned to that configuration server. In addition, the configuration server provides
each registered broker with a copy of the security cache, so that a broker can
independently authenticate client login requests and enforce security policies.

The primary configuration server maintains a single writeable master repository of
security data (users, groups, ACLs and QOPs). Other brokers receive a readable
copy of the security repository from the configuration server. The configuration
server acts as the transaction manager and is responsible for committing security
updates to the security database and for publishing the updates to other brokers.
The transaction process uses a combination of AmbrosiaMQ’s two-phase commit
facilities, guaranteed message delivery, and quality of protection to achieve a highly
reliable replication of the security data.

The static definition of the interbroker configuration is stored in the file
intebroker.cfg located in the AmbrosiaMQ/bin directory. The interbroker
configuration may be changed on-the-fly using the IBAdminConsole interbroker
admin tool. The configuration server is responsible for propagating any on-the-fly
changes to the interbroker configuration to all registered brokers.

Backup Configuration Server

A backup configuration server is a read-only replica that acts as a standby for the
primary configuration server. When a general purpose broker is unable to contact
the primary configuration server, it connects with the backup configuration server
and receives configuration and security data from it.

General Purpose Broker

General purpose brokers are primarily used for handling the majority of the
message traffic within the AmbrosiaMQ system. These brokers do not have any
specialized role in the configuration or security distribution, nor do they have any

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 78

specialized security restrictions. The general purpose brokers are typically
deployed on internal intranet topologies. General purpose brokers are usually
added to collectives to improve scalability.

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 79

7
Working with Transactions

AmbrosiaMQ’s Event Management System supports application transactional
processing by acting as a participant in coordinated transactions. Further,
AmbrosiaMQ supports the processing of transactions that may be distributed over
two or more applications. With such transactions, it is usually imperative that any
data changes be consistent globally; if the data changes in one application, the other
applications involved in the transaction must also reflect this change.

This chapter discusses usage of AmbrosiaMQ’s transactional processing capability
to ensure the consistency of data operations across a distributed system.

Chapter 7: Working with Transactions Introduction to Transactions

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 80

Introduction to Transactions
Several classes of applications require grouping individual tasks into a single,
coordinated “unit of work”. This grouping of tasks is called a transaction.
AmbrosiaMQ supports these applications by acting as a participant or resource
manager in a coordinated transaction, although it is not itself a transaction
processing (TP) monitor.

In a distributed transaction, the tasks in the unit of work are performed on
physically different computers or by different application programs or services. A
distributed transaction involves several steps:

• Prepare - to log or record the information necessary to complete the
transaction, either by rollback or commit.

• Roll back - to undo or reverse the tasks performed in the transaction,
leaving the data unchanged from its original state.

• Commit - to completely perform all the tasks in the unit of work (i.e.,
causes delivery of all messages in the transaction).

A distributed transaction relies on a transaction coordinator and one or more
resource managers. A resource manager is a process or service (such as a database)
that controls resources modified as part of the transaction. A transaction coordinator
supervises the transaction. It acts as a manager of all the resource managers, telling
them what to do. AmbrosiaMQ can act as a resource manager, whereas an
AmbrosiaMQ client application or service must act as the transaction coordinator.

AmbrosiaMQ coordinates the publication of a group of messages in the transaction
such that it sends messages if and only if the rest of the tasks in the transaction
commit. AmbrosiaMQ supports a two-phase commit protocol (2PC), which
guarantees atomic publication – it sends either all or none of the messages in the
unit of work.

Chapter 7: Working with Transactions Two Phase Commit

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 81

Two Phase Commit
How It Works

The two-phase commit protocol (2PC) guarantees that either every task in a
transaction commits or none of them commit. Messages are sent if and only if every
part of the transaction was completed successfully.

A transaction can use more than one resource manager. When there are multiple
resources involved in a single transaction, the only way to maintain their atomicity,
consistency, isolation, and durability (ACID) properties is to have a transaction
coordinator which orchestrates the transaction. This coordinator works by first
asking all the resource managers to prepare their parts of the transaction.

At this point, each resource manager prepares its part of the transaction. As part of a
successful preparation, the resource manager guarantees that it can either: 1)
completely commit the transaction; or 2) completely undo or “roll back” the
transaction. In terms of an AmbrosiaMQ client application, it will publish either the
entire group of messages or none of the messages. When it has finished the
preparation, the resource manager notifies the transaction coordinator.

The transaction coordinator waits to receive an indication of successful preparation
from each of the resource managers. After each resource manager has indicated a
successful prepare, the coordinator issues a commit message which completes the
transaction at each resource manager (hence, the global transaction). However, if
the coordinator receives a single negative response to the original prepare message,
the coordinator issues a rollback message to all of the resource managers.

Recovery

By design, the two-phase commit works even if failures occur. This avoids an
inconsistent global state that might occur if one resource manager thinks the
transaction committed while another resource manager thinks the transaction rolled
back.

Therefore, the coordinator must not only send messages to the resource managers,
but also must protect itself from failures. Typically, the coordinator writes the state
of the transaction to a local log. AmbrosiaMQ’s Message Broker tracks this
information for the application. The coordinator becomes, in effect, a resource
manager of the resource managers in this transaction. In the event the coordinator fails,
it can recover itself by reading its log. If a resource manager fails, it can recover by
requesting the outcome of a particular transaction from the coordinator. A resource
manager can prepare a transaction and, due to failures in the system, not know if the
transaction committed; this state is known as an in-doubt transaction.

A coordinator and a resource manager must agree on how to name a particular
transaction. Typically, the transaction coordinator assigns a transaction identifier (XID)
to a transaction. In AmbrosiaMQ, the client application passes the XID to the message
broker using the Session.prepareWork() method. In general, a resource
manager uses XIDs to track multiple, simultaneous transactions, and to handle each
transaction’s status, prepare, commit, or rollback.

Transaction Operations in AmbrosiaMQ Chapter 7: Working with Transactions

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 82

Transaction Operations in AmbrosiaMQ
A transaction executes in the scope of a Session object. Within the context of a
transaction, the AmbrosiaMQ Message Broker acts as a resource manager for
published messages, not as a transaction coordinator. The AmbrosiaMQ client
application must coordinate the transaction. The operations affected by being in a
Session with an open transaction are the publish(), solicit(), and
reply() methods. Please refer to the Client API Reference Manual for details on
the transactional methods in the Session class.

In a typical Session object, calling a publish(), solicit(), or reply()
for an individual message causes publication to occur at the time of the call.
However, once Session operations take on transactional semantics, opening a
unit of work causes these methods to act differently, since publication will not
occur at the time of the call. Instead, the publication waits until the client
application calls endWork(). This method sends all pending publications to the
message broker in a logical unit of work; either all pending publications are
published or none of them are published. The client application can cancel the
pending publications at any time before the endWork() call by using
rollbackWork().

Basic Transaction Structure

In a basic transaction in AmbrosiaMQ, a client application begins the transaction,
produces messages into that transaction, and then completes the transaction by
publishing those messages. If the transaction is cancelled before the publish occurs,
AmbrosiaMQ throws an ETransactionRollbackByBroker exception and
the messages are not published; no data is permanently changed.

A transaction involving multiple resource managers uses the same basic framework
with a few additional steps to ensure the transaction commits. A client application
begins the transaction, produces messages into that transaction, and prepares the
transaction with the message broker. If the prepare was successful, the broker sends
all the messages: if the prepare was not successful, the transaction is automatically
rolled back (the transaction-specific information at each resource manager is
returned to its previous state). If a client application loses its connection before the
completion of the transaction, it will receive a request message from the broker
upon reconnection, requesting the transaction’s status on the subject
$SYS.TRANSACTION.IN-DOUBT. The client application instructs the message
broker to commit or roll back the in-doubt transaction, depending on the status of
the global transaction.

Note that only the publish(), reply(), and solicit() methods add
messages to a unit of work. The other method which sends messages to other
applications, request(), never joins as part of a transaction regardless of the
state of the Session).

Transactions cannot occur nested within other transactions.

Chapter 7: Working with Transactions Transaction Operations in AmbrosiaMQ

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 83

Beginning a Transaction

An application explicitly begins a transaction by calling the beginWork()
method on the Session object; for example, the Session passed into a
IMessageHandler.handleMessage() routine. If this call succeeds, then all
later publishes in this Session will be made as part of an atomic publish. The
atomic publish occurs when the transaction is committed by a call to endWork().

Rolling Back a Transaction

A rollbackWork() call on the Session object can be made at any time before
the transaction is finally committed. AmbrosiaMQ views this as non-
acknowledgment of the message delivery. If a client MessageHandler’s Session calls
rollbackWork(), AmbrosiaMQ will immediately re-deliver the message to the
Session’s handler, if the Session was associated with a handler.

Committing the Transaction

To commit AmbrosiaMQ’s part of the transaction, the application first issues a
prepareWork() call. This method takes a transaction identifier argument for the
current transaction. Since AmbrosiaMQ does not try to interpret this identifier, any
string of characters that the application (or its designated coordinator) chooses can
be used. The identifier is used only if the AmbrosiaMQ client application which
issued the prepareWork() call fails before the AmbrosiaMQ system receives
the final endWork() call. After the prepareWork() succeeds and all the other
resource managers (i.e., client applications) are also ready, the endWork()
method is issued, causing the message broker to now send any queued publications.
After this is done, the AmbrosiaMQ system “forgets” about the current transaction.

Determining Transaction Status

In the event the AmbrosiaMQ system does not get the endWork() call following a
previously successful prepareWork() call, the broker remembers the queued
messages and the transaction identifier associated with them via the
prepareWork() call which queues the publishes from the unit of work. In this
case, AmbrosiaMQ assumes the client crashed and that it will re-connect to the
AmbrosiaMQ system when it restarts.

When the client re-connects, the system sends a request message on the designated
subject “$SYS.TRANSACTION.IN-DOUBT.” This message contains the
transaction identifier of the in-doubt transaction. The Message.readUTF()
method should be used to get the in-doubt transaction ID. The client message
handler must determine whether or not the transaction fully committed and return
that information to the AmbrosiaMQ system. The client message handler informs
the message broker by responding with a message whose body contains either true
or false. True indicates the transaction committed, while false indicates that the
transaction rolled back. The Message.writeBoolean() method must be used
to write the status into the message.

If the message broker receives the message containing true (transaction committed),
it publishes the queued messages from that particular transaction. If the message

Transaction Operations in AmbrosiaMQ Chapter 7: Working with Transactions

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 84

broker receives the message containing false (transaction rolled back), it does not
publish the queued messages and now treats that transaction as rolled back.

Therefore, all AmbrosiaMQ clients processing transactions using
prepareWork() should bind to “$SYS.TRANSACTION.IN-DOUBT” and
attach a message handler capable of determining the status of transactions.

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 85

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 87

A
Glossary

This glossary offers a brief overview of commonly used terms to help clarify AmbrosiaMQ’s major
concepts and characteristics.

Definition of Terms Appendix A: Glossary

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 88

Definition of Terms

AmbrosiaMQ Client Application
The client application refers to an application that uses the AmbrosiaMQ client
package to communicate with the event management system. The package may
already reside, pre-provisioned, on a user’s local computer or may arrive with an
applet downloaded from an HTTP server. Once on the local machine, an application
uses methods in the client API to connect with the message broker and join the
AmbrosiaMQ system.

Credentials
This consists of the user’s ID (i.e., name or login) and password. Credentials objects
identify the end users of AmbrosiaMQ client applications.

Event
A business event can be anything that happens which materially affects your
organization. AmbrosiaMQ encapsulates business events as information carried in
messages.

Event Management System
The AmbrosiaMQ Event Management System includes the entire communications
infrastructure and the information flowing within the system. The infrastructure
links several main components: the business application using the AmbrosiaMQ
Client API, the AmbrosiaMQ Message Broker, and other client applications.

Interbroker
An optional feature of AmbrosiaMQ that allows you to have more than one broker. Using
the Interbroker Configuration tool, you may establish and maintain multiple brokers.
Groups of brokers are then organized into “collectives.”

Message
Message objects carry event information between AmbrosiaMQ client applications.
AmbrosiaMQ messages consist of a subject name and a content body, which is
simply a series of bytes. As a result, messages can include any application data.
Each message must be published to a specific subject. AmbrosiaMQ does not set
any limits on the size of a message. AmbrosiaMQ handles the details of
marshalling, unmarshalling, and other low level process details so that developers
can focus on the message contents.

Appendix A: Glossary Definition of Terms

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 89

Message Broker
As the heart of the system, the broker routes messages and implements services. A
broker communicates with AmbrosiaMQ client applications and with other message
brokers as well. The message broker maintains lists of connected clients and their
current subscriptions. Client applications and the message broker communicate by
use of the com.u1.client package.

Message Handler
Message handlers act upon messages arriving at a client. The client application
must initially set a default message handler, Subsequently, the client can designate
specific message handlers for individual subjects or sets of subjects.

Publish
A publish occurs when an AmbrosiaMQ client application produces information
and sends a message with this information to the message broker.

Publish/Subscribe
The publish/subscribe communication model is based on the ability of client
applications to publish messages tagged with subject names, which are then
delivered only to other clients who hold a subscription (that is, an interest) for that
subject. This basic model promotes a many-to-many mapping of publishers to
subscribers. It also describes an anonymous communications architecture wherein
subscribers do not need to know who published a particular message and publishers
do not know the subscribers’ specific addresses. A central message broker tracks
subscriptions, routes messages, and implements delivery policies. By default, every
client application can publish and/or subscribe to a subject.

Quality of Protection
The Quality of Protection (QOP) options for a subject consist of privacy and
integrity. Privacy assures that only the intended recipient views a message by using
encryption. Integrity uses a cryptographic hashing algorithm to ensure that the
information within a message cannot be altered without the recipient knowing about
it.

Quality of Service
Quality of Service (QOS) refers to delivery semantics, which are the levels of
assurance with which AmbrosiaMQ will deliver a message. AmbrosiaMQ supports
two types of delivery semantics: reliable and guaranteed message delivery. These
delivery semantics are further enhanced by various QOS options including
discardable, expirable, Most Recent Value, and so forth.

Definition of Terms Appendix A: Glossary

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 90

Request/Reply
The request/reply model provides a very useful approach to query for particular
information. AmbrosiaMQ implements request/reply as a special case of publish/
subscribe. When a publisher sends out a message as a synchronous request, the
function will wait until the first response to the request is received; all other
responses are ignored.

Session
Every session represents a single context of communication between the broker and
client application. Client applications can create multiple sessions in which to
perform work.

Subjects
Subjects provide the key to the routing of messages between publishers and
subscribers. Subjects provide an anonymous alternative to citing specific
destination addresses. Almost any string of Unicode characters can act as a subject to
describe the topic category of a message. Subject names consist of one or more
levels separated by the period (.) character. AmbrosiaMQ reserves subject names
with “$SYS” and “$ISYS” at the first level for internal system use.

Subject Expression
A subject expression can include multiple levels and one or more wildcards, the
asterisk (*) or the pound(#). Thus, the subject expression can represent a set of
subjects for subscribing or binding. Wildcard characters are interpreted literally in
unsubscribe()or unbind().

Subject Tree
Subject trees form the basis of message routing in AmbrosiaMQ and thus play an important
role in application design. Subject trees are hierarchical strings composed of levels of
subject names. Levels are established by using a separator character, the period (.), to
partition the subject tree branches. Thus, levels can establish subject branches such as
“SOFTWARE.JAVA” or “SOFTWARE.C” to provide groups and specific sub-topics for
messages. The system can have an unlimited number of subject trees, and each subject tree
can have an unlimited number of levels.

Subscribe
To subscribe, a client application registers interest in a subject or multiple subjects, possibly
by using wildcards. Subscribing presents several choices: quality of service, specific
message handler, and related features. The developer usually hides the use of message
handlers, delivery semantics, and specific subjects from the end user of the application
using AmbrosiaMQ for its communications.

Appendix A: Glossary Definition of Terms

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 91

Transaction
Several classes of applications require grouping individual tasks into a single,
coordinated “unit of work”. This grouping of tasks is called a transaction. In a
distributed transaction, the tasks in the unit of work are performed on physically
different computers or by different application programs or services.

Two-Phase Commit
This protocol enables AmbrosiaMQ to commit a transaction and send an entire set of
messages in a unit of work, or to abort and roll back the entire set of messages. Thus, the
message broker acts as a resource manager so client applications can participate in
transactions.

Definition of Terms Appendix A: Glossary

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 92

B
Index

A

Access Control Lists _______________________ 55
Authentication _________________________ 52, 54

B

Broker _______________________________ 21, 62
Broker Roles _____________________________ 65

C

Credentials____________________________ 23, 53

E

Event Management System__________________ 20

G

Groups _______________________________ 53, 59
Guaranteed delivery ____________________ 15, 37

H

Hub-and-Spoke ________________________ 31, 62

I

Integrity ______________________________ 52, 56

L

Load Balanced Delivery____________________ 36

M

Message __________________________ 24, 32, 34
Message Broker ____________________See Broker
Message Handler ______________________ 24, 48
Message order ___________________________ 11

P

Password _______________________________ 54
Priority _________________________________ 38
Publish/Subscribe______________________ 32, 77
Push and Respond ________________________ 15

Q

Quality of Protection ______________________ 56
Quality Of Protection ______________________ 53
Quality of Service __________________ 15, 36, 77

R

Reliable delivery ______________________ 15, 36
Request/Reply ________________________ 34, 77

S

Security __________________________ 12, 16, 52
Session ______________________________ 24, 78
Special Principal _________________________ 55
Subject Tree _______________________ 24, 44, 78

Appendix B: Index

U1 Technologies – AmbrosiaMQ ™ – Concepts and Capabilities Guide 93

Subjects ______________________________ 44, 78
Subscriptions __________________________ 25, 47

T

Transactions __________________________ 67, 78

W

Wildcards _______________________________ 47

