

© U1 Technologies - AmbrosiaMQ – Multi-Collective Configuration 1

AmbrosiaMQ™ Multi-Broker Configuration

The purpose of this guide is to provide a set of instructions for quickly creating an
AmbrosiaMQ multi-broker configuration. There are many other advanced configurations,
including multi-regional collectives that are connected through redundant bridge brokers.
The configuration of these types of deployments is beyond the scope of this document.

1 Installation
AmbrosiaMQ can be installed very easily and quickly using a four step process. Simply
execute the command setup.bin (for Solaris and Linux) or setup.exe (for windows) and
follow the installation instructions as illustrated below.

© U1 Technologies - AmbrosiaMQ – Multi-Collective Configuration 2

© U1 Technologies - AmbrosiaMQ – Multi-Collective Configuration 3

2 Overview of Multi-Collective Configuration
AmbrosiaMQ uses the following terminology:

• Broker a message broker that is responsible for routing messages between
consumers and producers. Client applications (message producers and consumers)
connect with a broker.

• Collective a cluster of interconnected brokers that route messages between
their clients. A message producer that is connected to a broker in the collective
can send messages to a consumer that is connected to any other broker in the
collective.

• Primary configuration server/broker a broker that is responsible for distributing
configuration information to other brokers. This includes security information,
collective configuration, load-balancing pool information, and so forth. A
configuration server need not be a member of the same collective as the brokers it
serves. In fact, a configuration server need not be part of any collective at all.
Configuration servers can also function as regular brokers, routing messages
between producers and consumers. However, in practice, this kind of broker does
not do so.

• Secondary configuration server/broker a broker that is responsible for
distributing configuration information to other brokers in case the primary
configuration server is down or unreachable. AmbrosiaMQ supports up to 255
secondary configuration servers.

• Regular broker A broker that is not a primary or secondary configuration
server. Its function is to route messages between producers and consumers

The standard installation of AmbrosiaMQ includes several multi-broker configurations.
One such configuration is called basic-ib-sec (Basic Interbroker with Security). We will
use this configuration as the base and will build on it. The diagram below depicts the
broker configuration for basic-ib-sec.

Figure 1 Configuration of basic-ib-sec

3 Adding a new Collective
Assume that we want to add a new collective called east-coast with three regular brokers
in it called NY1, NY2 and NY3. The machines that will host NY1, NY2, and NY3 are
called NY1Host, NY2Host and NY3Host, respectively. The ports to which these brokers
listen will be 58101, 58201, and 58301. We will use broker1 and broker2 from basic-ib-

© U1 Technologies - AmbrosiaMQ – Multi-Collective Configuration 4

sec as the primary and secondary configuration server. The resulting configuration is
depicted below.

Figure 2 The collective east-coast with three brokers

Note that the collective east-coast and basic-ib[USA] are not connected to each other.
This can be done using a bridge collective, but the configuration is beyond the scope of
this document.

The steps for creating the collective and running its brokers are as follows. Replace
[AMBROSIAMQ] with the AmbrosiaMQ installation directory.

1. Ensure that no broker in the basic-ib-sec collective is running. You can run the
script stop.sh in [AMBROSIAMQ]/config/basic-ib-sec to stop the running
brokers.

2. Create broker specification and collectives as follows
a. Change directory to [AMBROSIAMQ]/config/basic-ib-sec/broker1
b. Edit the file interbroker.cfg. This file consists of several sections

(.brokers, .lbpool, .collective). In the .brokers section add
the specification for the three NY brokers as follows (replace NY1Host,
NY2Host and NY3Host with the host name or IP address of the machine
on which you plan to run these brokers):
NY1, NY1Host:58101
NY2, NY2Host:58201
NY3, NY3Host:58301

c. At the end of this file, add a new collective section as follows:
.collective east-coast
NY1
NY2
NY3

d. Commit your changes and quit the editor

3. Start the configuration server brokers.
a. Change directory to [AMBROSIAMQ]/config/basic-ib-sec
b. Run the script run.sh

© U1 Technologies - AmbrosiaMQ – Multi-Collective Configuration 5

4. Start Security Administration Utility as follows (the procedure assumes you are
executing the utility on the same machine as the primary configuration server.
Otherwise, replace localhost with the host name or IP address of the machine that
runs the primary configuration server)

a. Source the environment
source [AMBROSIAMQ]/linux/setcp

b. Run the tool SecAdminConsole
java com.u1.tools.SecAdminConsole localhost:8001
Administrator Administrator

c. Add security credentials for the NY brokers
SecAdmin> set user NY1, pass1
SecAdmin> set user NY2, pass2
SecAdmin> set user NY3, pass3

d. Add NY brokers to the brokers group
SecAdmin> add member Brokers, NY1
SecAdmin> add member Brokers, NY2
SecAdmin> add member Brokers, NY3

e. Quit from SecAdminConsole
 SecAdmin> quit

5. Configure each of the three NY brokers:

a. Under the directory [AMBROSIAMQ]/config/basic-ib-sec create three

other directories called NY1, NY2 and NY3
cd [AMBROSIAMQ]/config/basic-ib-sec
mkdir NY1 NY2 NY3

b. Copy the file [AMBROSIAMQ]/config/basic-ib-sec/broker3/ambroker.ini
to each of the directories NY1, NY2 and NY3
cd [AMBROSIAMQ]/config/basic-ib-sec
cp broker3/ambroker.ini NY1
cp broker3/ambroker.ini NY2
cp broker3/ambroker.ini NY3

c. For each ambroker.ini file in NY1, NY2, and NY3 create a log directory
mkdir [AMBROSIAMQ]/config/basic-ib-sec/NY1/log
mkdir [AMBROSIAMQ]/config/basic-ib-sec/NY2/log
mkdir [AMBROSIAMQ]/config/basic-ib-sec/NY3/log

d. For each ambroker.ini file in NY1, NY2, and NY3, modify the file to

reflect the correct settings. The following properties should be changed.
Replace [ConfigServerHost] with the host name or IP address of the
machine that runs the configuration servers.

In file NY1/ambroker.ini
BROKER_NAME=NY1
BROKER_PASSWORD=pass1
ACCEPTORS = 58101, ssl://58102

© U1 Technologies - AmbrosiaMQ – Multi-Collective Configuration 6

IB_CONFIG_SERVER=[ConfigServerHost]:8001,
[ConfigServerHost]:8011

In file NY2/ambroker.ini

BROKER_NAME=NY2
BROKER_PASSWORD=pass2
ACCEPTORS = 58201, ssl://58202
IB_CONFIG_SERVER=[ConfigServerHost]:8001,
[ConfigServerHost]:8011

In file NY2/ambroker.ini

BROKER_NAME=NY3
BROKER_PASSWORD=pass3
ACCEPTORS = 58301, ssl://58302
IB_CONFIG_SERVER=[ConfigServerHost]:8001,
[ConfigServerHost]:8011

6. Initialize the database of each broker.

a. For broker NY1
cd [AMBROSIAMQ]/config/basic-ib-sec/NY1
java com.u1.broker.InitBrokerDatabase create

b. For broker NY2
cd [AMBROSIAMQ]/config/basic-ib-sec/NY2
java com.u1.broker.InitBrokerDatabase create

c. For broker NY3
cd [AMBROSIAMQ]/config/basic-ib-sec/NY3
java com.u1.broker.InitBrokerDatabase create

7. Run each of the three NY brokers

a. For broker NY1
source [AMBROSIAMQ]/linux/setcp
cd [AMBROSIAMQ]/config/basic-ib-sec/NY1
java com.u1.broker.Broker

b. For broker NY2
source [AMBROSIAMQ]/linux/setcp
cd [AMBROSIAMQ]/config/basic-ib-sec/NY2
java com.u1.broker.Broker

c. For broker NY3
source [AMBROSIAMQ]/linux/setcp
cd [AMBROSIAMQ]/config/basic-ib-sec/NY3
java com.u1.broker.Broker

© U1 Technologies - AmbrosiaMQ – Multi-Collective Configuration 7

4 Using MySQL as the broker’s databases
Every broker’s ambroke.ini file has a section for database configuration parameters. By
default, AmbrosiaMQ uses Derby. However, you can use other databases such as
MySQL, Oracle or SyBase. To replace Derby with MySQL, perform the following steps:

1. Comment out the Derby section of ambroker.ini by placing a # at the beginning of
each of the following lines (or, you can just delete these lines)
DB_USER=user1
DB_PASSWORD=user1
DB_CONNECT=jdbc:derby:AmbrosiaMQ_db;create=true
JDBC_DRIVER=org.apache.derby.jdbc.EmbeddedDriver
DB_PROPERTIES=../derby.cfg

2. Uncomment the section that has MySQL parameters and insert the correct values.
The configuration below assumes a database user called AmbrosiaMQ with a
password AmbrosiaMQ and MySQL server running locally at port 7997. There
must be a MySQL database instance called ambroker

DB_USER=AmbrosiaMQ
DB_PASSWORD= AmbrosiaMQ
DB_CONNECT=jdbc:mysql://127.0.0.1:7997/ambroker
JDBC_DRIVER=com.mysql.jdbc.Driver
DB_PROPERTIES=[AMBROSIAMQ]/config/mysql.cfg

Note that if you change the database configuration of an existing broker, then you will
need to re-initialize the broker’s database by running step 6 in Section 3.

